版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Publishedonline:xxxxxxxx
NatureEcology&Evolution
natureecology&evolution
Article
/10.1038/s41559-024-02618-y
Collectivedynamicalregimespredict
invasionsuccessandimpactsinmicrobialcommunities
Received:22February2024
Accepted:25November2024
Checkforupdates
JiliangHu1,2,MatthieuBarbier3,4,GuyBunin
5&JeffGore
1
Theoutcomesofecologicalinvasionsmaydependoneithercharacteristicsoftheinvadingspeciesorattributesoftheresidentcommunity.Herewe
useacombinationofexperimentsandtheorytoshowthattheinterplay
betweendynamics,interactionstrengthanddiversitydeterminethe
invasionoutcomeinmicrobialcommunities.Wefndthatthecommunitieswithfuctuatingspeciesabundancesaremoreinvasibleanddiversethan
stablecommunities,leadingtoapositivediversity–invasibilityrelationshipamongcommunitiesassembledinthesameenvironment.Aspredictedby
theory,increasinginterspeciesinteractionstrengthandspeciespoolsize
leadstoadecreaseofinvasionprobabilityinourexperiment.Ourresults
showapositivecorrespondencebetweeninvasibilityandsurvivalfractionofresidentspeciesacrossallconditions.Communitiescomposedofstronglyinteractingspeciescanexhibitanemergentpriorityefectinwhichinvaderspeciesarelesslikelytocolonizethanspeciesintheoriginalpool.However,ifaninvasionissuccessful,itsecologicalefectsontheresidentcommunityaregreaterwheninterspeciesinteractionsarestrong.Ourfndingsprovideaunifedperspectiveonthediversity–invasibilitydebatebyshowingthat
invasibilityandinvasionefectareemergentpropertiesofinteractingspecies,whichcanbepredictedbysimplecommunity-levelfeatures.
Ecologicalinvasions,characterizedbythespreadofnon-nativespeciesintonewenvironments,haveimportantconsequencesforbiodiversity,ecosystemfunctionandhabitatresilience
1
.Overdecades,ecologistshavesoughttounravelthemyriadfactorsinfluencingwhysomespe-ciesinvadesuccessfullyandwhysomeofthosehavelargeimpactsonresidentspeciescommunities,whileothersdonot.Ecologistshavepositedarangeofdeterminants,fromthefitnessandadaptabilityoftheinvaderstotheresilienceandcompositionofnativecommunities
2
–4
.Amongstudiesfocusingontheinvaderspecies,manyhavesoughttoidentifytraits,suchasgrowthanddispersalstrategies,thatmayshapeinvasionoutcomes
5
.Othershaveemphasizedtheroleoftheinvaders’initialpopulationsizeinthelikelihoodofestablishmentand
spread
6
,7
.Yetothershaveemphasizedinteractionswithresidentspe-cies;forexample,theenemyreleasehypothesisthatinvasivespeciesoftensucceedinnewenvironmentsbecausetheylackconsumersorpathogens
8
.Thishasledtoresearchonhowpropertiesofresidentcommunitiesasawholecandeterminetheinvasionoutcome.Forinstance,thebioticresistancehypothesissuggeststhatcommunitieswithhighnativebiodiversityaremoreresistanttoinvasionthanlessdiversecommunities,duetomoreefficientresourceuseorpresenceofnaturalenemies,butitisnotconsistentlysupportedbyempiricalresults
9
–
12
.Beyondthecharacteristicsofinvaderspeciesandresidentcommunities,environmentalconditionshavebeenshowntoplayacrucialroleinshapingtheinvasionoutcome
1
.Forexample,theories
1PhysicsofLivingSystems,DepartmentofPhysics,MassachusettsInstituteofTechnology,Cambridge,MA,USA.2DepartmentofMechanicalEngineering,
MassachusettsInstituteofTechnology,Cambridge,MA,USA.3CIRAD,UMRPHIM,Montpellier,France.4PHIMPlantHealthInstitute,MontpellierUniversity,
CIRAD,INRAE,InstitutAgro,IRD,Montpellier,France.5DepartmentofPhysics,Technion—IsraelInstituteofTechnology,Haifa,Israel.e-mail:
gore@
Article
/10.1038/s41559-024-02618-y
NatureEcology&Evolution
suchasthestorageeffectandthefluctuatingresourceavailabilityhypothesispositthatenvironmentaldisturbancesandfluctuationsmightfavourinvaderspeciesinspecificperiods
13
–
15
.
Morerecently,theissueofecologicalinvasionhasbecomesalientinthestudyofmicrobialcommunities,rangingfromsoilandaquaticecosystemstothehumanbody
16
–22
.Theseinvasionscanhaveprofoundimpactsonecosystemservicesandhumanhealth
16
,
17,
19,
20
.Pathogenicmicroorganismscaninvadehost-associatedmicrobialcommunities,leadingtoinfectionsanddisease
19
,23
,24
.Forexample,theinvasionofthepathogenicmicroorganismClostridiumdifficileintothegutmicrobiotacanleadtoseverediseases,includingdiarrhoeaandcolitis
23
,25
.Under-standingthemechanismsunderlyinginvasionsuccessandecologicalconsequencescanhelptoinformstrategiesfordiseaseprevention,aswellasthedevelopmentoftargetedtherapiestocontrolinvasivepathogens
25
,
26
.Similartolarger-scaleecologicalsystems,ithasbeensuggestedthatmicrobialcommunitieswithhigherdiversity(numberofspecies)arelesslikelytobeinvadedbecausediverseresidentspeciesmayoccupyallavailablenichesbyconsumingallresources,leavinglessroomforinvaders
18
,27
–29
.Furthermore,itwasshownthatfacilitativeandcompetitiveinteractionsbetweenmicroorganismscanfavourandpreventsuccessfulinvasions,respectively
27,
30
–
32
.Paralleltoobserva-tionsinmacroorganisms,externaldisruptions,suchasantibioticinterventionsornutrientlevelshifts,canheightenthevulnerabilityofmicrobialcommunitiestoinvasions
16
,33
–
35
.
Whileresearchinmicrobialinvasionshasmadeimportantstrides,itremainsunclearwhatcharacteristicsofresidentcommunitiesdeter-minethesuccessandimpactsofaninvasion
17
,18
,
36
,37
.Speciesdiversityisaneasilymeasuredindicator,butitsrelationshiptoinvasibilitymaynotbestraightforward,whereasspeciesinteractionsareprobablyimportantbutoftendifficulttoquantify.Ararelyemphasizedpropertyisthedynamicsoftheresidentcommunity:arethespeciesabundancesconstantovertime,consistentwithastablestateoraretheydetermin-isticallyfluctuating?Itisnotobviousthatwecancharacterizedynamicsatthelevelofthecommunity;yet,buildinguponthegroundbreak-ingworkofRobertMay,ecologistshaveexploredthepossibilityofcommunity-wideemergentdynamics,whichcanbeclassifiedintoonlyafewqualitativelydistinctregimesandpredictedfromafewmacroscopicparameters
10
,38
–
43
.Inarecentstudy
40
,weexperimentallyassembledcommunitiesfromvariouspoolsofmicrobialspeciesindifferentconditionsandconfirmedthatsimplecommunity-levelfea-tures,includingspeciespoolsizeandinterspeciesinteractionstrength,determineddistinctdynamicalregimescharacterizedbythefractionofsurvivingspeciesandtheemergenceofdeterministicabundancefluctuationsovertime.Asspeciespoolsizeandstrengthofinterac-tionsincrease,wefoundthatmicrobialecosystemstransitionbetweenthreedistinctdynamicalphases,fromastableequilibriuminwhichallspeciescoexisttopartialcoexistencetotheemergenceofpersistentfluctuationsinspeciesabundances
40
.
Hereweperforminvasionexperimentsindiverseassembledmicrobialcommunitiesandobservethattheforemostpredictorofinvasionoutcomesappearstobethedynamicalstateoftheresidentcommunity.Wethenuseacombinationofexperimentsandtheory,exploringseveraldynamicalregimesandspanningtheircontrolparam-eters(speciespoolsizeandinteractionstrength)toshowthat,takentogether,theyexplainmanyfeaturesofinvasibilityandinvasioneffects.Communitiesofweaklyinteractingspeciesreachastablecomposition,whereafractionoftheinitialspeciespoolsurvives,andfurtherinva-sionsdisplaythesamefractionofsuccesses,onlyweaklyperturbingresidentspecies.Largerspeciespoolsandstrongerinteractionscangiverisetofluctuatingstates,wherespeciesabundancesfluctuateovertime.Wefoundthatthesefluctuatingcommunitiesaremoreinvasibleanddiversethanstablecommunities,leadingtoapositivediversity–invasibilityrelationshipamongcommunitiesassembledinthesameenvironmentandthesamespeciespoolsize.Thesedetermin-isticfluctuationsincommunitiesarechaoticdynamicsorlimitcycle
oscillationsdrivenbyinterspeciesinteractions,ratherthanstochasticfluctuationsdrivenbydemographicnoise.Finally,communitieswithstronginteractionscanalsoreachalternativestablestateswhereinva-sionssucceedmorerarelythanpredictedbysurvivalfraction,butstronglyimpacttheresidentcommunitywhentheydo.Thelowerinva-sionprobabilitycomparedtothesurvivalfractionsuggestsapriorityeffect,wherebyearlierinvadersprecludelateronesfromgrowingfromsmallabundances,leadingtosituationswherethesequenceandtimingofspeciesintroductioncaninfluenceinvasionsuccess
10
,44
,45
.
Studyinginvasionsthroughtheprismofcommunity-widedynami-calregimesallowsustoconnectseveralstrandsofecologicalthinking,regardingwhatcountsasasuccessfulinvasion,whenfactorssuchaspopulationsizeandhistorymatter,andwhatconsequencesinva-sionshaveonresidentcommunitystructureandfunctioning
46
,47
.Fur-thermore,ithelpsclarifythehypothesisthatincreasedcommunitydiversityresultsinreducedinvasionprobabilityduetofeweravailableniches
18
,27
–29
.Withinfixedconditions(giventhesameinitialspeciespoolsizeandenvironment),morediversecommunitiestendtobefoundinfluctuatingstates,andareactuallymorelikelytobeinvaded.Depend-ingonhowwechangeconditions—forexample,increasingspeciespoolorreducinginteractionstrength—diversitymaypositivelyornegativelycorrelatewithinvasibility,providingoneexplanationforinconsistentobservations
48
–50
.Throughoutthesedifferentconditions,however,thefractionofsurvivingspeciesduringtheinitialcommunityassemblyremainsabetterpredictorofinvasibility,displayingauniversalposi-tivecorrespondencewithinvasibilityacrossallconditions,modulatedbythepresenceofpriorityeffects.Ourresultsdemonstratethatbothinvasibilityandinvasioneffectsareemergentproperties,shapedbytheinteractionsofresidentspecies,whichcanbepredictedbysimplecommunity-levelfeatures.
Resultsanddiscussion
Toexperimentallycharacterizeinvasionsinmicrobialcommunities,webuilt17differentsyntheticcommunitiesofsizeS=20usingalibraryof80bacterialisolatesfromriverandterrestrialenvironments(Fig.
1a
andSupplementaryFig.1).Weexposedeachcommunitytodailycyclesofgrowthanddilutionintofreshmedia,withdispersalfromthespeciespool(S=20)tomimicspeciesdispersalinnaturalhabitats(Fig.
1a
).After6daysofculturing,weexposedeachcommunitytoaninvaderspe-cies(Fig.
1a
)andwecontinuedtoculturethecommunitiesforanother6dayswithdispersalofallspeciesoneachdilutioncycle(Fig.
1a,b
).Foreachresidentcommunity,weperformedseventonineindepend-entinvasiontestswithdifferentrandomlychoseninvaderspeciesonday6,andmonitoredthegrowthoftheinvaderandresidentspecies(Fig.
1b
).Analysingspeciesabundancesthrough16Ssequencing,wefoundthat7%±2%ofinvasiontestsweresuccessful(relativeinvaderabundanceexceededextinctionthreshold8×10?4onthelastday12;therationalebehindthechoiceofextinctionthresholdisexplainedintheSupplementaryMaterialsandMethods)(Fig.
1c
andSupplementaryFigs.2and26).Althoughdiverseecosystemsaretypicallythoughttobemoreresistanttoinvaders
18
,27
–29
,ourexperimentalresultsdisplayasig-nificant(P=0.036)positivecorrelationbetweeninvasionprobabilityandcommunitydiversity,wherethediversityisdefinedasthenumberofspeciesthatsurvivedtheassemblyprocessover6days(correlationcoefficient=0.5;Fig.
1c
).Amongcommunitiesoflowdiversity(twotofivesurvivingspecies),only3%±2%ofinvasionsweresuccessful,whereasamongcommunitiesofhighdiversity(sixtoninesurvivingspecies)13%±5%ofinvasionsweresuccessful.Throughoutthemanu-script,weusedthestandarderrorofthemean(s.e.m.)asthemeasureofdispersion.Wethereforefindthatlessdiversecommunitiesmayresistinvasionsbetterthanhighlydiverseonesunderthesameinitialspeciespoolsizeandnutrientconditions.
Tobetterunderstandwhythemorediversecommunitiesweremoreinvasible,wenextquantifiedthedynamicsoftheresidentcom-munitiesbeforeinvasion.Wefoundthatjustunderhalf(8/17)the
Article
/10.1038/s41559-024-02618-y
NatureEcology&Evolution
a
20bacterialisolates
...
Speciesinvadeonday6
Dilution
Dispersal
InoculateOnday0
Growth
Invade
12days
Failure
Measurements
16SrRNA
amplicon
sequencing
Biomass
b
~9invaderspecies
cdResidentcommunities
0.31.0
Fluctuation
Stable
17residentcommunities
...
?
?
...
?
...
?
...
?
...
...
?
...
Invasionprobability
Biomass(OD)
0.8
0.2
0.6
?
0.4
0.1
?
...
0.2
0
12
3456
2468
RichnessofresidentcommunityTime(days)
?
e
100
Relativespeciesabundance
10–1
10–2
10–3
Invasionprobability
StablecommunityfFluctuatingcommunityg
0.20
BeforeinvasionAfterinvasionBeforeinvasionAfterinvasion*
0.15
Invader
0.10
0.05
2
0
1012
2
468Time(days)
1012
Stablefluctuation
468Time(days)
Fig.1|Experimentsusingsyntheticmicrobialcommunities.Theinvasion
probabilityinfluctuatingcommunitiesishigherthanstableones,leadingtoapositivediversity–invasibilityrelationship.a,WeusedalibraryofbacteriatogeneratedifferentsyntheticcommunitieswithS=20speciesinthepool(under‘high’nutrientconditions;Methods).Communitiesunderwent
serialdailydilutionswithadditionaldispersalfromthepool.Weintroducedinvaderspeciestotheresidentcommunitiesonday6andcontinuedtoapplydailydispersalofinvaders.Communitycompositionandtotalbiomasswere
monitoredvia16Ssequencingandopticaldensity(OD).b,Weformed17residentcommunitieswithdifferentsetsofspecies(S=20).Weaddedinvaderspecies
outsidethepoolintotheresidentcommunitiesonday6,andthenmeasured
thecommunitycompositionsandbiomassonday12todeterminetheoutcome
andeffectoftheinvasions.c,Theinvasionprobabilityinresidentcommunitiespositivelycorrelatewiththeirrichness(correlationcoefficient=0.5,P=0.047)underthesamespeciespoolsizeandnutrientconditions.d,Outofthe17
residentcommunities,8reachfluctuationinbiomass(orange)andtheother
9communitiesreachstablestates(purple).e,Representativetimecourseof
relativespeciesabundancevia16Ssequencingshowthatthestablecommunitywasnotinvaded.f,Therepresentativetimecourseofrelativespeciesabundanceshowsthattheinvadersuccessfullyinvadesandgrowsinthefluctuating
community.g,Theinvasionprobabilityinfluctuatingresidentcommunitiesis
statisticallyhigherthanthatofstablecommunities(twoindependentsamples
two-sidedStudent’st-test,P=0.016,thenumberofinvasiontestsisn=61(60)forfluctuating(stable)communities).Errorbars,s.e.m.
residentcommunitiesdisplayedpersistentanddeterministicfluctua-tionsinbiomassandspeciescomposition,withtheremainderreachingstablecommunitystates(Fig.
1d–f
andSupplementaryFigs.3–12).Wefoundthatbiomassfluctuationswerehighlycorrelatedwithspeciesabundancefluctuations(SupplementaryFig.12)andtheclassifica-tionofstableandfluctuatingcommunitieswasrobusttodifferentmethods(SupplementaryFig.12).Thesedeterministicfluctuations
incommunitiesarechaoticdynamicsorlimitcycleoscillationsdrivenbyinterspeciesinteractions,ratherthanstochasticfluctuationsdrivenbydemographicnoise,becauseofthelargepopulationsizeregimeinthisstudy(SupplementaryMaterialsandMethods).Consistentwithourpreviousresults,wefoundthatthediversityoffluctuatingcom-munitiesisapproximatelytwicethediversityinstablecommunities(Fig.
1c
)
40
.Giventhishigherdiversityinfluctuatingcommunities,we
Article
/10.1038/s41559-024-02618-y
NatureEcology&Evolution
nextanalysedtheinvasibilityofcommunitiesseparatelyforthestableandfluctuatingcommunitiestodetermineifthiscouldbedrivingthepositivediversity–invasibilityrelationshipthatweobserved.Indeed,wedetectedeightsuccessfulinvasionsoutof61invasionteststofluctu-atingcommunities,whiletherewasonlyonesinglesuccessfulinvasionoutof60invasionteststostablecommunities(SupplementaryFig.2).Ourresultsthereforeshowthattheprobabilitytosuccessfullyinvadefluctuatingcommunities(13%±4%)isstatisticallyabouteightfoldlargerthantheprobabilityofinvadingstablecommunities(1.7%±1.7%)(Fig.
1g
).Ourexperimentaltestsofinvasiondemonstratethat,forfixedenvironmentandspeciespoolsize,morediversecommunitiesaremoreinvasiblebecausefluctuatingcommunitiesarebothmorediverseandmoresusceptibletoinvasion.However,wewillshowlaterthat,whenspeciespoolsizeornutrientconcentrationisvaried,thisrelationshipdoesnotalwayshold.Thisincreasedinvasibilityoffluctu-atingcommunitiescanbeinterpretedthroughthelensofnichetheory,wherefluctuatingcommunitiescreatefluctuatingnicheavailabilityforinvaderspecies
13
.Temporalfluctuationsinresourceavailabilityandenvironmentalconditionsallowinvaderstoexploitnichesthatmaynotbeconsistentlyavailableinstablecommunities
13
–
15
.
Togaininsightintothesesurprisingrelationshipsbetweendiversity,stabilityandinvasibility,wenextstudiedinvasionsinthewell-knowngeneralizedLotka–Volterra(gLV)model,modifiedtoincludedispersalfromaspeciespool:
whereNi(Nj)istheabundanceofspeciesi(j)(normalizedtoitscarryingcapacity),tisthetime,αijistheinteractionstrengththatcaptureshowstronglyspeciesjinhibitsspeciesi(withself-regulationαii=1)andDisthedispersalrate,whichissettoD=10?5(SupplementaryFigs.24and25).WesimulatedthedynamicsofcommunitieswithdifferentspeciespoolsizesSandcompetitiveinteractionmatricesbecausecompetitionisthedominantinteractiontypeinourexperiments
40
.WesampledtheinteractionstrengthfromauniformdistributionU[0,2<αij>],where<αij>isthemeaninteractionstrengthbetweenspecies(predictionsofthismodelareinsensitivetotheparticulardistributionchosen
40
).Mod-ellingspeciesinteractionsasarandominteractionnetworkcapturesspeciesheterogeneitywithoutassuminganyparticularcommunitystructure
10
,
38
–
40
.Weintroducedinvadersintoresidentcommunitiesatt=103andcontinuedtosimulatethedynamicsuntilt=2×103todeterminetoinvasionoutcome.
Oursimulationsrevealedawiderangeofdynamicsandinvasionoutcomesunderstronginteractionstrengthbetweenspecies(Fig.
2a
andSupplementaryFig.31).Somesuccessfulinvasionscausedramaticeffectsonthestructuresofresidentcommunities,whereasotherinva-sionsonlyyieldweakchangeincommunities(Fig.
2a
).Consistentwithourexperimentalresults(Fig.
1c,g
),wefoundapositivecorrelationbetweeninvasionprobabilityandrichness(numberofresidentspe-ciescoexistingbeforeinvasion)(Fig.
2b
),whichisbecausefluctuatingcommunitiesexhibitlargerinvasionprobabilitythanstablecommuni-tiesunderthesameconditions(Fig.
2c
).OursimulationresultswiththeLotka–Volterramodelalsopredictthattheinvasionprobabilitydecreaseswhenmeaninteractionstrength<αij>andthespeciespoolsizeSincrease(Fig.
2d–f
).Itisimportanttonotethatalthoughfluc-tuatingcommunitiesexhibitlargerinvasionprobabilitythanstablecommunitiesunderthesameconditions,stablecommunitiescanstillyieldlargerinvasionprobabilityunderweakerinteractionstrength<αij>orsmallerspeciespoolsizeS(Fig.
2d–f
).Ifweinterpretthesephenomenologicalinteractionsintermsofnichetheoryandresourcecompetition
51
,strongerinteractionstrengthcorrespondstolargernicheoverlapandgreaterresourceconsumption,makingitharderforinvaderstoestablish.Similarly,alargerspeciespoolincreasesthetotalinteraction(morenicheoverlap)betweencommunityspeciesand
invaderspecies,therebyinhibitinginvasionmorestrongly
51
.WealsodevelopedamodelthatintegratesexplicitpH-mediatedgrowthwiththeLotka–Volterraframework,allowinginteractionstobeexpressedasafunctionofpHmodification.ThisnewmodelsuggeststhatthepresenceofpHeffectsincreasestheeffectiveinterspeciesinteractionstrengths,butotherwiseyieldspredictionssimilartothoseofthecanonicalLotka–Volterramodel(SupplementaryFig.23).Inaddition,wefoundthatneitherserialdilutionsnortheexistenceofpositive(facilitative)interspeciesinteractionsqualitativelyaffectsthisresult(SupplementaryFigs.28–30).TheLotka–Volterramodelthereforeexplainswhyourdiverseandfluctuatingcommunitiesaresusceptibletospeciesinvasionandmakesnewpredictionsregardinghowinvasibil-itywouldchangewiththesizeofthespeciespoolandthestrengthofinterspeciesinteractions(Fig.
2d–f
).
Toexperimentallytestthepredicteddependenceofinvasionprobabilityoninteractionstrengthandspeciespoolsize,wetunedtheinterspeciesinteractionstrengthbytuningtheconcentrationofsupplementedglucoseandureaintheculturemedium
40
,
52
,
53
.Asdis-cussedinourpreviouswork
40
,52
,53
,increasingtheconcentrationofsup-plementedglucoseandurealeadstostrongerstrengthofcompetitiveinteractionsbetweenbacterialspeciesduetoextensivemodificationofthemedia(forexample,pH).Wemeasuredtheinvasionofaboutnineinvaderspeciesto15syntheticresidentcommunitiesunderlownutrientconditions(weakinteraction)and25communitiesunderhighnutrient(stronginteraction)conditions.Consistentwithourtheoreti-calpredictions,wefoundthatincreasinginteractionstrengthleadstoadecreaseofinvasionprobabilityinresidentcommunities(Fig.
3a
).Specifically,theinvasionprobabilitywas56%±8%inlownutrientconditions(weakinteraction),eightfoldhigherthantheinvasionprob-abilityof7%±2%observedinhighnutrientconditions(stronginterac-tion)(Fig.
3a
).WealsodecreasedthespeciespoolsizefromS=20toS=12andfoundthatinvasionprobabilityincreasedto85%±6%from56%±8%inlownutrientconditions(weakinteraction)(Fig.
3b
),con-sistentwithourtheoreticalpredictions.Weonlyobservedstablecom-munitiesunderlownutrients(weakinteraction)becausefluctuationsonlyemergewhenspeciespoolsizeandinteractionstrengtharelargeenoughtocrossthestabilityboundary
40
.Ourtheoryandexperimentbothindicatethatincreasingeitherinteractionstrengthorspeciespoolsizeleadstoadecreaseincommunityinvasibility
10
,18
,
27
–29
.
Tounifydifferentinvasibility-richnessrelationshipsintheexperi-mentsdependinguponhowtherichnessischanged(byvaryinginterac-tionstrength,speciespoolsizeordynamicalregime)(SupplementaryFig.13),wenextanalysedthedependenceofinvasionprobabilityonthesurvivalfractionofspeciesinresidentcommunities,definedasthefractionofspeciesintheinitialpoolthatsurvivetheassemblyprocess(onday6beforeinvasion).Theresultsshowastronglypositivecorrela-tionofinvasibilitywithsurvivalfraction,wherethecorrelationcoef-ficientis0.77(P=3.4×10?7)(Fig.
3c
).Microbialcommunitiesculturedinlownutrient(weakinteraction)mediadisplaybothalargerinvasionprobabilityandlargersurvivalfractionthancommunitiesunderhighnutrient(stronginteraction)(Fig.
3c
).Furthermore,fluctuatingcom-munities,whichareeasiertobesuccessfullyinvaded,alsoexhibitlargersurvivalfractionthanstablecommunitiesunderthesameconditions(Figs.
1c
and
3c
).Theseresultsdemonstratethatthesurvivalfractioncanserveasaunifyingpredictoroftheinvasibilityofaresidentcom-munity.Althoughithasbeensuggestedthatmicrobialcommunitieswithhigherdiversityarelesslikelytobeinvadedbecausetheyleavefeweravailablenichesforinvaders
18
,
27
–29
,ourresultsindicatethatthisisonlytruewhenthediversityisincreasedbyincreasingthesizeofthespeciespool(Figs.
1c
and
3c
).However,ifdiversityismodulatedbyachangeininteractionstrengthorstability,thenmorediversecom-munitiesareinsteadmoreinvasible.
Despitetheobservedcorrespondencebetweeninvasionprob-abilityandsurvivalfraction,wefindthatinvasionprobabilityunderhighnutrient(stronginteraction)conditionsisgenerallylowerthan
Article
/10.1038/s41559-024-02618-y
NatureEcology&Evolut
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 《湖湘文學(xué)教育論》課件
- 《竹與中國(guó)文化》課件
- 小學(xué)一年級(jí)10到20加減法練習(xí)題口算
- 防校園欺凌講座心得體會(huì)
- 《病例神經(jīng)內(nèi)科》課件
- 服裝行業(yè)前臺(tái)服務(wù)要點(diǎn)
- 礦產(chǎn)行業(yè)人才培養(yǎng)總結(jié)
- 課堂氛圍與學(xué)習(xí)積極性提升計(jì)劃
- 家政服務(wù)行業(yè)客服工作總結(jié)
- 安徽省宿州市埇橋區(qū)教育集團(tuán)2022-2023學(xué)年九年級(jí)上學(xué)期期末質(zhì)量檢化學(xué)試題
- 滬教2011課標(biāo)版三年級(jí)起點(diǎn)五年級(jí)下冊(cè)《Buying Clothes》說(shuō)課稿
- 幼兒園教職工教代會(huì)會(huì)議記錄
- 車(chē)輛移交安全協(xié)議書(shū)
- 《涑水記聞》2021年江蘇鎮(zhèn)江中考文言文閱讀真題(含答案與翻譯)
- 家庭家教家風(fēng)·家庭美德·文明家庭主題班會(huì)
- 廬山云霧閱讀答案千姿百態(tài)
- 個(gè)人營(yíng)業(yè)執(zhí)照注銷(xiāo)委托書(shū)范文
- 影像敘事語(yǔ)言智慧樹(shù)知到答案章節(jié)測(cè)試2023年中國(guó)傳媒大學(xué)
- 鋼筋工具箱實(shí)訓(xùn)任務(wù)指導(dǎo)課件項(xiàng)目三整體框架角柱構(gòu)造
- 流體力學(xué)(清華大學(xué)張兆順54講) PPT課件 1
- 騰訊績(jī)效考核方案設(shè)計(jì)
評(píng)論
0/150
提交評(píng)論