甘肅有色冶金職業(yè)技術(shù)學院《商務(wù)智能分析》2023-2024學年第一學期期末試卷_第1頁
甘肅有色冶金職業(yè)技術(shù)學院《商務(wù)智能分析》2023-2024學年第一學期期末試卷_第2頁
甘肅有色冶金職業(yè)技術(shù)學院《商務(wù)智能分析》2023-2024學年第一學期期末試卷_第3頁
甘肅有色冶金職業(yè)技術(shù)學院《商務(wù)智能分析》2023-2024學年第一學期期末試卷_第4頁
甘肅有色冶金職業(yè)技術(shù)學院《商務(wù)智能分析》2023-2024學年第一學期期末試卷_第5頁
全文預覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁甘肅有色冶金職業(yè)技術(shù)學院《商務(wù)智能分析》

2023-2024學年第一學期期末試卷題號一二三四總分得分一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在數(shù)據(jù)分析中,數(shù)據(jù)挖掘的算法和技術(shù)有很多,其中神經(jīng)網(wǎng)絡(luò)是一種常用的算法。以下關(guān)于神經(jīng)網(wǎng)絡(luò)的描述中,錯誤的是?()A.神經(jīng)網(wǎng)絡(luò)可以用于分類、回歸和聚類等問題B.神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)包括輸入層、隱藏層和輸出層C.神經(jīng)網(wǎng)絡(luò)的訓練過程需要大量的數(shù)據(jù)和計算資源D.神經(jīng)網(wǎng)絡(luò)的結(jié)果是確定性的,不會受到數(shù)據(jù)噪聲和異常值的影響2、在處理大數(shù)據(jù)集時,分布式計算框架能夠提高計算效率。假設(shè)要分析海量的社交媒體數(shù)據(jù),以下關(guān)于分布式計算框架選擇的描述,正確的是:()A.Hadoop適合處理大規(guī)模的結(jié)構(gòu)化數(shù)據(jù),但對實時性要求高的任務(wù)不太適用B.Spark僅能處理批處理任務(wù),無法支持流處理C.Flink在處理流數(shù)據(jù)方面表現(xiàn)不佳,主要用于批處理D.這些分布式計算框架都差不多,隨便選擇一個都能滿足需求3、數(shù)據(jù)分析中的因果推斷旨在確定變量之間的因果關(guān)系,而非僅僅是相關(guān)性。假設(shè)你想研究廣告投入與產(chǎn)品銷售之間的關(guān)系,以下關(guān)于因果推斷方法的選擇,哪一項是最關(guān)鍵的?()A.進行隨機對照實驗,控制其他因素來確定因果關(guān)系B.基于觀察數(shù)據(jù),使用回歸分析來推斷因果關(guān)系C.僅僅依靠相關(guān)系數(shù)來判斷因果關(guān)系D.主觀猜測和經(jīng)驗判斷因果關(guān)系4、在數(shù)據(jù)分析中,數(shù)據(jù)倉庫的建設(shè)需要考慮多個因素,其中數(shù)據(jù)模型是一個重要的因素。以下關(guān)于數(shù)據(jù)模型的描述中,錯誤的是?()A.數(shù)據(jù)模型是對數(shù)據(jù)的組織和存儲方式的抽象描述B.數(shù)據(jù)模型可以分為概念模型、邏輯模型和物理模型三個層次C.數(shù)據(jù)模型的設(shè)計應該考慮數(shù)據(jù)的完整性、一致性和可擴展性D.數(shù)據(jù)模型的選擇只取決于數(shù)據(jù)的類型和規(guī)模,與數(shù)據(jù)分析的需求無關(guān)5、在進行數(shù)據(jù)分析時,如果需要對數(shù)據(jù)進行標準化處理以消除量綱的影響,以下哪種方法在Python中常用?()A.StandardScaler類B.MinMaxScaler類C.Normalizer類D.以上都是6、在數(shù)據(jù)分析中,抽樣是一種常用的方法。以下關(guān)于抽樣的描述,錯誤的是:()A.簡單隨機抽樣保證了每個樣本被抽取的概率相等B.分層抽樣可以保證樣本在不同層次上具有代表性C.整群抽樣的效率較高,但精度可能較低D.抽樣不會引入偏差,能完全反映總體的特征7、在數(shù)據(jù)分析中,數(shù)據(jù)倉庫的建設(shè)需要多方面的專業(yè)知識。以下關(guān)于數(shù)據(jù)倉庫建設(shè)所需專業(yè)知識的說法中,錯誤的是?()A.數(shù)據(jù)倉庫建設(shè)需要數(shù)據(jù)庫管理、數(shù)據(jù)建模、數(shù)據(jù)分析等方面的專業(yè)知識B.數(shù)據(jù)倉庫建設(shè)需要了解業(yè)務(wù)需求和數(shù)據(jù)特點,以便設(shè)計出合適的架構(gòu)和模型C.數(shù)據(jù)倉庫建設(shè)只需要技術(shù)人員參與,業(yè)務(wù)人員不需要了解數(shù)據(jù)倉庫的建設(shè)過程D.數(shù)據(jù)倉庫建設(shè)需要不斷學習和掌握新的技術(shù)和方法,以適應不斷變化的需求8、在數(shù)據(jù)分析中,若要分析數(shù)據(jù)的偏態(tài)和峰態(tài),以下哪個統(tǒng)計量可以提供相關(guān)信息?()A.偏度系數(shù)B.峰度系數(shù)C.協(xié)方差D.相關(guān)系數(shù)9、數(shù)據(jù)分析中的特征選擇旨在從眾多特征中挑選出最有價值的特征。假設(shè)要從一組高度相關(guān)的特征中進行選擇,以下哪種方法可能是合適的?()A.基于相關(guān)性的特征選擇B.基于遞歸消除的特征選擇C.基于隨機森林的特征重要性評估D.以上方法都可以10、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的目的是為了更好地傳達數(shù)據(jù)的信息。以下關(guān)于數(shù)據(jù)可視化目的的描述中,錯誤的是?()A.數(shù)據(jù)可視化可以幫助人們更直觀地理解數(shù)據(jù)B.數(shù)據(jù)可視化可以發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式和趨勢C.數(shù)據(jù)可視化可以提高數(shù)據(jù)的準確性和可靠性D.數(shù)據(jù)可視化可以增強數(shù)據(jù)的說服力和影響力11、在數(shù)據(jù)分析中,因果推斷用于確定變量之間的因果關(guān)系。假設(shè)要研究廣告投入與銷售額之間的因果關(guān)系,以下關(guān)于因果推斷的描述,哪一項是不正確的?()A.隨機對照實驗是確定因果關(guān)系的黃金標準,但在實際中可能難以實施B.觀察性研究可以通過控制混雜因素來推斷因果關(guān)系,但存在一定的局限性C.相關(guān)性強就意味著存在因果關(guān)系,可以直接根據(jù)相關(guān)性得出因果結(jié)論D.可以使用工具變量、雙重差分等方法來解決因果推斷中的內(nèi)生性問題12、在數(shù)據(jù)分析中,若要評估一個預測模型的準確性,以下哪個指標是常用的?()A.均方誤差B.標準差C.偏度D.峰度13、數(shù)據(jù)分析中的分類算法用于將數(shù)據(jù)分為不同的類別。假設(shè)要構(gòu)建一個分類模型來預測客戶是否會流失,以下哪種算法可能對處理不平衡的數(shù)據(jù)集(流失客戶數(shù)量遠少于未流失客戶)表現(xiàn)較好?()A.邏輯回歸B.決策樹C.支持向量機D.隨機森林14、在處理大量數(shù)據(jù)時,為了提高數(shù)據(jù)處理效率,以下哪種數(shù)據(jù)結(jié)構(gòu)更適合快速查找和插入操作?()A.數(shù)組B.鏈表C.棧D.隊列15、在進行數(shù)據(jù)分析時,特征工程對于模型的性能有著重要影響。假設(shè)你正在處理一個預測房價的數(shù)據(jù)集,包含房屋面積、房間數(shù)量、地理位置等特征。以下關(guān)于特征工程的操作,哪一項是最需要謹慎處理的?()A.對數(shù)值型特征進行標準化或歸一化處理,使其具有相同的量綱B.將地理位置轉(zhuǎn)換為經(jīng)緯度數(shù)值,并作為新的特征C.基于現(xiàn)有特征創(chuàng)建新的交互特征,如房屋面積與房間數(shù)量的乘積D.隨意刪除一些看起來不重要的特征,以簡化模型二、簡答題(本大題共4個小題,共20分)1、(本題5分)解釋數(shù)據(jù)挖掘中的情感分析在客戶反饋處理中的應用,說明如何提取和分析客戶的情感傾向。2、(本題5分)簡述數(shù)據(jù)分析師如何進行問題定義和需求分析,包括與業(yè)務(wù)部門溝通、理解業(yè)務(wù)背景和目標等,并舉例說明。3、(本題5分)闡述數(shù)據(jù)挖掘中的情感分析中的深度學習方法,如使用卷積神經(jīng)網(wǎng)絡(luò)、循環(huán)神經(jīng)網(wǎng)絡(luò)等,并舉例說明在客戶評論分析中的應用。4、(本題5分)在數(shù)據(jù)分析中,數(shù)據(jù)清洗是非常重要的一步。請詳細闡述數(shù)據(jù)清洗的主要任務(wù)和常用方法,并舉例說明其在實際項目中的應用。三、論述題(本大題共5個小題,共25分)1、(本題5分)在影視娛樂行業(yè),觀眾的觀看行為和評價數(shù)據(jù)對于內(nèi)容創(chuàng)作和推薦具有重要意義。以某在線視頻平臺為例,分析如何運用數(shù)據(jù)分析來制作受歡迎的影視作品、優(yōu)化內(nèi)容推薦算法、評估用戶滿意度,以及如何平衡個性化推薦和熱門內(nèi)容推薦。2、(本題5分)在體育賽事的組織和運營中,如何利用數(shù)據(jù)分析來安排賽程、評估運動員表現(xiàn)和預測比賽結(jié)果?請詳細闡述數(shù)據(jù)分析的方法和作用,以及如何應對數(shù)據(jù)的不確定性和突發(fā)事件的影響。3、(本題5分)探討在社交媒體的用戶增長分析中,如何運用數(shù)據(jù)分析了解用戶獲取和留存的關(guān)鍵因素,制定有效的用戶增長策略。4、(本題5分)在金融科技領(lǐng)域,新興的金融產(chǎn)品和服務(wù)產(chǎn)生了大量復雜的數(shù)據(jù)。探討如何運用數(shù)據(jù)分析進行風險評估、產(chǎn)品定價、市場監(jiān)測,并分析數(shù)據(jù)驅(qū)動的金融創(chuàng)新所帶來的機遇和挑戰(zhàn)。5、(本題5分)人力資源管理中可以利用員工數(shù)據(jù)進行績效評估、人才選拔和培訓需求分析。論述如何運用數(shù)據(jù)分析方法實現(xiàn)這些目標,以及如何確保數(shù)據(jù)的安全性和隱私保護,同時分析數(shù)據(jù)分析在人力資源戰(zhàn)略制定中的支持作用。四、案例分析題(本大題共4個小題,共40分)1、(本題10分)一家房地產(chǎn)公司擁有樓盤銷售數(shù)據(jù),包括樓盤位置、戶型、面積、價格、銷售進度等。研究不同戶型和面積的樓盤在不同位置的銷售情況和價格走勢。2、(本題10分)一家健身中心的團體課程記錄了會員數(shù)據(jù),包括課程類型、教練

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論