廣州番禺職業(yè)技術(shù)學(xué)院《機(jī)器人學(xué)基礎(chǔ)原理》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
廣州番禺職業(yè)技術(shù)學(xué)院《機(jī)器人學(xué)基礎(chǔ)原理》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
廣州番禺職業(yè)技術(shù)學(xué)院《機(jī)器人學(xué)基礎(chǔ)原理》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
廣州番禺職業(yè)技術(shù)學(xué)院《機(jī)器人學(xué)基礎(chǔ)原理》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

站名:站名:年級專業(yè):姓名:學(xué)號:凡年級專業(yè)、姓名、學(xué)號錯寫、漏寫或字跡不清者,成績按零分記。…………密………………封………………線…………第1頁,共1頁廣州番禺職業(yè)技術(shù)學(xué)院

《機(jī)器人學(xué)基礎(chǔ)原理》2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共25個小題,每小題1分,共25分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在人工智能的自然語言生成任務(wù)中,需要生成連貫和有意義的文本。假設(shè)要開發(fā)一個能夠自動生成新聞報(bào)道的系統(tǒng),以下關(guān)于自然語言生成的描述,正確的是:()A.隨機(jī)生成單詞和句子的組合就能夠產(chǎn)生有邏輯和可讀性的新聞報(bào)道B.僅僅依靠語言模型的概率預(yù)測,不考慮語義和上下文信息,也能生成高質(zhì)量的文本C.利用深度學(xué)習(xí)模型學(xué)習(xí)大量的新聞文本數(shù)據(jù),并結(jié)合語義理解和規(guī)劃,可以生成較為準(zhǔn)確和流暢的新聞報(bào)道D.自然語言生成系統(tǒng)不需要考慮語言的風(fēng)格和體裁,能夠生成通用的文本2、在人工智能的自動駕駛道德決策中,假設(shè)車輛面臨一個不可避免的碰撞場景,需要在保護(hù)車內(nèi)乘客和避免傷害行人之間做出選擇。以下哪種決策原則在倫理上更被接受?()A.優(yōu)先保護(hù)車內(nèi)乘客的生命安全B.隨機(jī)選擇保護(hù)對象C.基于最大多數(shù)人的利益進(jìn)行決策D.這是一個無法確定的道德困境,沒有明確的決策原則3、假設(shè)在一個智能教育系統(tǒng)中,需要利用人工智能為學(xué)生提供個性化的學(xué)習(xí)路徑和資源推薦。為了準(zhǔn)確評估學(xué)生的學(xué)習(xí)狀態(tài)和需求,以下哪種數(shù)據(jù)和方法可能是重要的?()A.學(xué)習(xí)行為數(shù)據(jù)和聚類分析B.知識掌握程度數(shù)據(jù)和回歸分析C.學(xué)習(xí)偏好數(shù)據(jù)和分類算法D.以上都是4、當(dāng)利用人工智能進(jìn)行藥物研發(fā),例如預(yù)測藥物分子的活性和副作用,以下哪種技術(shù)和數(shù)據(jù)可能是重要的支撐?()A.化學(xué)信息學(xué)和分子模擬B.生物醫(yī)學(xué)數(shù)據(jù)和機(jī)器學(xué)習(xí)C.藥物臨床試驗(yàn)數(shù)據(jù)和統(tǒng)計(jì)分析D.以上都是5、人工智能在醫(yī)療影像診斷中的應(yīng)用越來越廣泛,但也存在誤診的風(fēng)險(xiǎn)。假設(shè)要提高一個基于人工智能的醫(yī)療影像診斷系統(tǒng)的準(zhǔn)確性和可靠性,以下哪種方法最為重要?()A.增加訓(xùn)練數(shù)據(jù)的多樣性B.引入人類專家的監(jiān)督和反饋C.不斷更新和優(yōu)化模型D.以上方法同等重要6、在人工智能的模型訓(xùn)練中,過擬合是一個常見的問題。假設(shè)一個模型在訓(xùn)練集上表現(xiàn)非常好,但在測試集上性能很差。為了緩解過擬合,以下哪種方法是有效的?()A.增加訓(xùn)練數(shù)據(jù)的數(shù)量B.減少模型的復(fù)雜度C.應(yīng)用正則化技術(shù),如L1和L2正則化D.以上都是7、人工智能中的強(qiáng)化學(xué)習(xí)算法可以分為基于值函數(shù)的方法和基于策略的方法。以下關(guān)于這兩種方法的描述,不正確的是()A.基于值函數(shù)的方法通過估計(jì)狀態(tài)值或動作值來選擇最優(yōu)動作B.基于策略的方法直接學(xué)習(xí)策略函數(shù),輸出動作的概率分布C.基于值函數(shù)的方法和基于策略的方法不能結(jié)合使用,只能選擇其一D.這兩種方法各有優(yōu)缺點(diǎn),在不同的應(yīng)用場景中表現(xiàn)不同8、在一個利用人工智能進(jìn)行智能物流配送的系統(tǒng)中,為了實(shí)現(xiàn)高效的路徑規(guī)劃和車輛調(diào)度,以下哪種算法和技術(shù)可能會被運(yùn)用?()A.遺傳算法B.蟻群算法C.模擬退火算法D.以上都是9、人工智能在醫(yī)療影像診斷中的輔助作用越來越受到重視。假設(shè)一個醫(yī)生正在借助人工智能系統(tǒng)輔助診斷X光片,以下關(guān)于醫(yī)療影像診斷中人工智能的描述,正確的是:()A.人工智能系統(tǒng)的診斷結(jié)果可以完全替代醫(yī)生的判斷,醫(yī)生無需再進(jìn)行分析B.醫(yī)生應(yīng)該將人工智能系統(tǒng)的診斷結(jié)果作為唯一參考,忽略自己的臨床經(jīng)驗(yàn)C.人工智能系統(tǒng)可以提供輔助信息和提示,幫助醫(yī)生更準(zhǔn)確地診斷,但最終決策仍由醫(yī)生做出D.醫(yī)療影像診斷中的人工智能技術(shù)還不夠成熟,不能為醫(yī)生提供任何有價(jià)值的幫助10、在人工智能的優(yōu)化算法中,隨機(jī)梯度下降(SGD)是常用的方法之一。假設(shè)在訓(xùn)練一個深度學(xué)習(xí)模型時,發(fā)現(xiàn)模型收斂速度較慢。以下哪種改進(jìn)的SGD變種或優(yōu)化策略能夠加快模型的收斂速度,同時避免陷入局部最優(yōu)解?()A.AdagradB.AdadeltaC.RMSPropD.以上策略結(jié)合使用11、人工智能中的強(qiáng)化學(xué)習(xí)在機(jī)器人控制領(lǐng)域有重要應(yīng)用。假設(shè)一個機(jī)器人需要學(xué)習(xí)在復(fù)雜環(huán)境中行走而不摔倒,以下關(guān)于獎勵函數(shù)的設(shè)計(jì),哪一項(xiàng)是最需要仔細(xì)考慮的?()A.只根據(jù)機(jī)器人是否到達(dá)目標(biāo)位置給予獎勵B.綜合考慮機(jī)器人的行走速度、穩(wěn)定性和能量消耗等因素給予獎勵C.給予固定的獎勵值,不考慮機(jī)器人的表現(xiàn)D.隨機(jī)給予獎勵,增加學(xué)習(xí)的不確定性12、人工智能在自動駕駛領(lǐng)域的應(yīng)用面臨著諸多技術(shù)和法律挑戰(zhàn)。假設(shè)一輛自動駕駛汽車在行駛過程中需要做出決策,如避讓行人或其他車輛。以下哪種方法在確保決策的安全性和合法性方面最為關(guān)鍵?()A.基于概率的決策模型B.遵循預(yù)設(shè)的規(guī)則和策略C.模仿人類駕駛員的決策方式D.實(shí)時收集大量的交通數(shù)據(jù)進(jìn)行分析13、人工智能中的聯(lián)邦學(xué)習(xí)可以在保護(hù)數(shù)據(jù)隱私的前提下進(jìn)行模型訓(xùn)練。假設(shè)多個機(jī)構(gòu)想要合作訓(xùn)練一個模型,但又不想共享原始數(shù)據(jù),以下哪個技術(shù)是聯(lián)邦學(xué)習(xí)的核心?()A.加密通信B.模型參數(shù)的加密共享和聚合C.分布式計(jì)算框架D.數(shù)據(jù)脫敏14、強(qiáng)化學(xué)習(xí)是一種通過與環(huán)境交互來學(xué)習(xí)最優(yōu)策略的方法。假設(shè)有一個機(jī)器人需要通過學(xué)習(xí)在復(fù)雜的環(huán)境中行走,并且根據(jù)行走的效果獲得獎勵或懲罰。以下關(guān)于強(qiáng)化學(xué)習(xí)的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.智能體通過不斷嘗試和錯誤來改進(jìn)策略B.獎勵信號對于智能體的學(xué)習(xí)至關(guān)重要C.強(qiáng)化學(xué)習(xí)不需要對環(huán)境進(jìn)行建模D.智能體的最終目標(biāo)是最大化累積獎勵15、在人工智能的情感分析任務(wù)中,需要判斷文本所表達(dá)的情感傾向。假設(shè)要分析社交媒體上用戶對某一產(chǎn)品的評價(jià)情感,以下關(guān)于情感分析的描述,正確的是:()A.僅僅依靠關(guān)鍵詞匹配就能夠準(zhǔn)確判斷文本的情感傾向B.深度學(xué)習(xí)模型在情感分析中總是比傳統(tǒng)的機(jī)器學(xué)習(xí)方法更準(zhǔn)確C.考慮文本的上下文、語義和語法結(jié)構(gòu)等多方面信息,能夠提高情感分析的準(zhǔn)確性D.情感分析的結(jié)果不受文本的語言風(fēng)格和表達(dá)方式的影響16、人工智能在智能家居領(lǐng)域的應(yīng)用為人們的生活帶來了便利。以下關(guān)于人工智能在智能家居應(yīng)用的描述,不準(zhǔn)確的是()A.可以實(shí)現(xiàn)家電的智能控制和自動化運(yùn)行,根據(jù)用戶的習(xí)慣和需求進(jìn)行個性化設(shè)置B.通過語音指令和智能傳感器,提供便捷的家居服務(wù)和環(huán)境監(jiān)測C.智能家居中的人工智能系統(tǒng)容易受到網(wǎng)絡(luò)攻擊和數(shù)據(jù)泄露的威脅D.目前智能家居中的人工智能應(yīng)用還處于初級階段,功能較為單一,無法滿足用戶的多樣化需求17、在人工智能的圖像超分辨率重建任務(wù)中,例如將低分辨率圖像恢復(fù)為高分辨率圖像,以下哪種技術(shù)和網(wǎng)絡(luò)結(jié)構(gòu)可能會發(fā)揮重要作用?()A.殘差網(wǎng)絡(luò)B.注意力機(jī)制C.對抗生成網(wǎng)絡(luò)D.以上都是18、人工智能在金融領(lǐng)域的應(yīng)用包括風(fēng)險(xiǎn)評估、欺詐檢測等。假設(shè)一家銀行要利用人工智能進(jìn)行客戶信用評估。以下關(guān)于人工智能在金融領(lǐng)域應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.可以通過分析客戶的交易記錄、信用歷史等多維度數(shù)據(jù)來評估信用風(fēng)險(xiǎn)B.人工智能模型能夠自適應(yīng)地學(xué)習(xí)和更新,以適應(yīng)不斷變化的金融市場環(huán)境C.人工智能的決策結(jié)果完全可靠,不需要人類專家的監(jiān)督和審核D.可以幫助金融機(jī)構(gòu)降低成本,提高風(fēng)險(xiǎn)控制的準(zhǔn)確性和效率19、深度學(xué)習(xí)模型在圖像識別任務(wù)中取得了顯著的成果。假設(shè)要訓(xùn)練一個深度卷積神經(jīng)網(wǎng)絡(luò)來識別不同種類的動物,以下關(guān)于模型訓(xùn)練的描述,正確的是:()A.增加網(wǎng)絡(luò)的層數(shù)一定能提高模型的識別準(zhǔn)確率,層數(shù)越多越好B.訓(xùn)練數(shù)據(jù)的數(shù)量和質(zhì)量對模型的性能影響不大,關(guān)鍵在于網(wǎng)絡(luò)結(jié)構(gòu)的設(shè)計(jì)C.模型在訓(xùn)練集上的準(zhǔn)確率很高,但在測試集上的準(zhǔn)確率很低,可能是出現(xiàn)了過擬合現(xiàn)象D.深度學(xué)習(xí)模型不需要進(jìn)行調(diào)參和優(yōu)化,直接使用默認(rèn)參數(shù)就能得到較好的結(jié)果20、可解釋性是人工智能模型面臨的一個重要問題。以下關(guān)于人工智能模型可解釋性的敘述,不正確的是()A.模型的可解釋性有助于用戶理解模型的決策過程和結(jié)果,增強(qiáng)信任B.一些復(fù)雜的深度學(xué)習(xí)模型,如深度神經(jīng)網(wǎng)絡(luò),往往具有較低的可解釋性C.為了提高模型的可解釋性,可以采用特征重要性分析、可視化等方法D.可解釋性對于所有的人工智能應(yīng)用都是同等重要的,不存在優(yōu)先級的差異21、人工智能中的遷移學(xué)習(xí)可以將在一個任務(wù)上學(xué)習(xí)到的知識應(yīng)用到其他相關(guān)任務(wù)中。假設(shè)已經(jīng)有一個在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的模型,要將其應(yīng)用于醫(yī)學(xué)圖像分析,以下哪個因素可能會限制遷移學(xué)習(xí)的效果?()A.數(shù)據(jù)分布的差異B.模型的復(fù)雜度C.計(jì)算資源的限制D.任務(wù)的相似性22、知識圖譜在人工智能中用于整合和表示知識。假設(shè)要構(gòu)建一個關(guān)于歷史事件的知識圖譜,以下關(guān)于知識圖譜構(gòu)建的描述,正確的是:()A.可以隨意收集和整合信息,無需對知識的準(zhǔn)確性和可靠性進(jìn)行驗(yàn)證B.知識圖譜的結(jié)構(gòu)和關(guān)系定義不重要,只要包含大量的數(shù)據(jù)就行C.構(gòu)建知識圖譜需要對知識進(jìn)行精心的組織和關(guān)聯(lián),以支持有效的查詢和推理D.知識圖譜一旦構(gòu)建完成,就無需更新和維護(hù),因?yàn)橹R是固定不變的23、人工智能在藝術(shù)創(chuàng)作領(lǐng)域也有一定的應(yīng)用。假設(shè)要使用人工智能生成音樂或繪畫作品。以下關(guān)于人工智能在藝術(shù)創(chuàng)作中的描述,哪一項(xiàng)是錯誤的?()A.可以為藝術(shù)家提供靈感和創(chuàng)意,輔助藝術(shù)創(chuàng)作過程B.生成的作品具有獨(dú)特的風(fēng)格和創(chuàng)意,完全可以與人類藝術(shù)家的作品媲美C.人工智能藝術(shù)創(chuàng)作仍然需要人類藝術(shù)家的指導(dǎo)和審美判斷D.引發(fā)了關(guān)于藝術(shù)定義和創(chuàng)作本質(zhì)的思考和討論24、人工智能中的遷移學(xué)習(xí)是一種有效的技術(shù),能夠利用已有的知識和模型來解決新的問題。假設(shè)我們已經(jīng)有一個在大規(guī)模圖像數(shù)據(jù)集上訓(xùn)練好的卷積神經(jīng)網(wǎng)絡(luò)模型,現(xiàn)在要將其應(yīng)用于一個新的、但相關(guān)的圖像分類任務(wù)。以下關(guān)于遷移學(xué)習(xí)的說法,哪一項(xiàng)是正確的?()A.可以直接使用原模型的參數(shù),無需任何調(diào)整B.只需要對模型的最后幾層進(jìn)行重新訓(xùn)練C.遷移學(xué)習(xí)一定能提高新任務(wù)的性能D.原模型的架構(gòu)和新任務(wù)必須完全相同25、在人工智能的藝術(shù)創(chuàng)作評價(jià)中,例如評價(jià)一幅由人工智能生成的繪畫作品,以下哪種標(biāo)準(zhǔn)和方法可能是具有挑戰(zhàn)性的?()A.創(chuàng)新性和獨(dú)特性B.技術(shù)技巧和表現(xiàn)力C.情感傳達(dá)和審美價(jià)值D.以上都是二、簡答題(本大題共4個小題,共20分)1、(本題5分)簡述人工智能在材料科學(xué)中的發(fā)展。2、(本題5分)談?wù)勚鲃訉W(xué)習(xí)在數(shù)據(jù)標(biāo)注中的作用。3、(本題5分)說明人工智能在文化傳承和創(chuàng)新中的角色。4、(本題5分)說明領(lǐng)域自適應(yīng)學(xué)習(xí)的挑戰(zhàn)和解決思路。三、案例分析題(本大題共5個小題,共25分)1、(本題5分)以某智能民間藝術(shù)文化交流平臺推薦系統(tǒng)為例,探討人工智能在用戶匹配和交流效果方面的作用。2、(本題5分)以某智能金融投資顧問為例,探討人工智能在資產(chǎn)配置中的策略。3、(本題5分)以某智能餐飲推薦系統(tǒng)為例,探討人工智能在菜品搭配和口味預(yù)測方面的應(yīng)用。4、(本題5分)分析一個利用人工智能進(jìn)行智能民間藝術(shù)傳承保護(hù)系統(tǒng),探討其如何記錄和傳承民間藝術(shù)。5、(本題5分)剖析某電商平臺利用人工智能進(jìn)行個性化推薦的案例,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論