哈爾濱醫(yī)科大學(xué)《招貼設(shè)計專題》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
哈爾濱醫(yī)科大學(xué)《招貼設(shè)計專題》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
哈爾濱醫(yī)科大學(xué)《招貼設(shè)計專題》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
哈爾濱醫(yī)科大學(xué)《招貼設(shè)計專題》2023-2024學(xué)年第一學(xué)期期末試卷_第4頁
哈爾濱醫(yī)科大學(xué)《招貼設(shè)計專題》2023-2024學(xué)年第一學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁哈爾濱醫(yī)科大學(xué)

《招貼設(shè)計專題》2023-2024學(xué)年第一學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分一、單選題(本大題共15個小題,每小題2分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺的姿態(tài)估計任務(wù)中,假設(shè)要估計一個物體在三維空間中的姿態(tài),例如估計一個機器人手臂的關(guān)節(jié)角度。以下哪種技術(shù)或方法可能被用于實現(xiàn)這一目標(biāo)?()A.基于立體視覺的方法,通過多個相機的觀測B.利用深度學(xué)習(xí)模型直接預(yù)測姿態(tài)參數(shù)C.僅根據(jù)物體的外觀形狀進行估計D.隨機猜測物體的姿態(tài)2、在計算機視覺的無人駕駛領(lǐng)域,環(huán)境感知是關(guān)鍵環(huán)節(jié)。假設(shè)要讓無人駕駛汽車準(zhǔn)確感知周圍的道路狀況、車輛和行人,同時要應(yīng)對惡劣天氣和復(fù)雜交通場景。以下哪種環(huán)境感知技術(shù)在這種高要求的應(yīng)用中發(fā)揮著重要作用?()A.激光雷達感知B.攝像頭視覺感知C.毫米波雷達感知D.以上技術(shù)融合感知3、在計算機視覺的圖像修復(fù)任務(wù)中,恢復(fù)圖像中缺失或損壞的部分。假設(shè)要修復(fù)一張老照片中缺失的部分,以下關(guān)于圖像修復(fù)方法的描述,正確的是:()A.基于紋理合成的圖像修復(fù)方法能夠完美恢復(fù)復(fù)雜的結(jié)構(gòu)和細節(jié)B.深度學(xué)習(xí)中的自編碼器在圖像修復(fù)中無法學(xué)習(xí)到有效的特征表示C.圖像修復(fù)的結(jié)果不受缺失區(qū)域的大小和形狀的影響D.結(jié)合先驗知識和上下文信息的深度學(xué)習(xí)方法可以產(chǎn)生更合理和自然的修復(fù)效果4、計算機視覺中的特征提取是非常關(guān)鍵的一步。以下關(guān)于特征提取方法的描述,不準(zhǔn)確的是()A.傳統(tǒng)的特征提取方法如SIFT(尺度不變特征變換)和HOG(方向梯度直方圖)在特定場景下仍然有效B.深度學(xué)習(xí)中的自動特征提取能夠?qū)W習(xí)到更具代表性和魯棒性的特征C.特征提取的好壞直接影響后續(xù)的圖像分類、目標(biāo)檢測等任務(wù)的性能D.特征提取只關(guān)注圖像的局部信息,而忽略了全局信息5、在計算機視覺的文本檢測和識別任務(wù)中,假設(shè)要從一張圖片中提取并識別其中的文字信息。以下關(guān)于文本檢測和識別的描述,哪一項是不正確的?()A.可以先通過文本檢測算法定位圖片中的文本區(qū)域,然后進行識別B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在文本識別中表現(xiàn)出色,能夠準(zhǔn)確識別各種字體和風(fēng)格的文字C.文本檢測和識別對于彎曲、傾斜和模糊的文字能夠輕松應(yīng)對,沒有任何困難D.可以結(jié)合光學(xué)字符識別(OCR)技術(shù),將圖片中的文字轉(zhuǎn)換為可編輯的文本6、計算機視覺中的場景理解是一項具有挑戰(zhàn)性的任務(wù)。假設(shè)要理解一個城市街道的場景圖像,包括道路、建筑物、車輛和行人等元素。以下關(guān)于場景理解方法的描述,正確的是:()A.基于語義分割的方法能夠?qū)D像中的每個像素分類為不同的場景元素,但無法提供元素之間的關(guān)系B.目標(biāo)檢測結(jié)合語義分割可以實現(xiàn)對場景的初步理解,但對于復(fù)雜的場景結(jié)構(gòu)難以準(zhǔn)確描述C.基于圖模型的方法能夠很好地表示場景元素之間的關(guān)系,但建模過程復(fù)雜,計算量大D.場景理解只需要對圖像中的可見元素進行分析,不需要考慮潛在的語義信息7、在計算機視覺的圖像融合任務(wù)中,將多幅圖像合成為一幅更完整、更有信息的圖像。假設(shè)要將一張白天拍攝的風(fēng)景圖像和一張夜晚拍攝的同一地點的圖像進行融合,以下關(guān)于圖像融合方法的描述,哪一項是不正確的?()A.可以基于像素級的融合策略,將兩幅圖像的像素值進行加權(quán)或組合B.特征級融合方法先提取圖像的特征,然后進行融合,能夠更好地保留圖像的語義信息C.圖像融合的效果只取決于融合算法的選擇,與輸入圖像的質(zhì)量和內(nèi)容無關(guān)D.多模態(tài)圖像融合需要考慮不同圖像的特點和互補性,以獲得更理想的融合結(jié)果8、在一個基于計算機視覺的無人駕駛系統(tǒng)中,需要對道路場景進行理解和預(yù)測,例如判斷前方是否有行人橫穿馬路。為了實現(xiàn)準(zhǔn)確的場景理解和預(yù)測,以下哪種技術(shù)可能是關(guān)鍵?()A.語義分割B.實例分割C.場景圖生成D.以上都是9、在計算機視覺中,視頻摘要生成是從長視頻中提取關(guān)鍵內(nèi)容并生成簡潔的摘要。以下關(guān)于視頻摘要生成的敘述,不正確的是()A.視頻摘要生成可以基于關(guān)鍵幀提取、內(nèi)容分析和故事線構(gòu)建等方法B.深度學(xué)習(xí)方法能夠?qū)W習(xí)視頻的語義信息,生成更有代表性的摘要C.視頻摘要生成在視頻瀏覽、檢索和存儲等方面具有實用價值D.視頻摘要生成能夠完全準(zhǔn)確地反映視頻的所有重要內(nèi)容,沒有任何信息丟失10、計算機視覺中的圖像去霧是一個具有挑戰(zhàn)性的問題。假設(shè)要去除一張有濃霧的風(fēng)景圖像中的霧氣,以下哪種方法可能需要對大氣散射模型有深入的了解?()A.基于深度學(xué)習(xí)的去霧方法B.基于物理模型的去霧方法C.基于圖像增強的去霧方法D.基于濾波的去霧方法11、在計算機視覺的全景圖像拼接任務(wù)中,假設(shè)要將多張拍攝的局部圖像拼接成一幅完整的全景圖。以下關(guān)于圖像匹配和融合的步驟,哪一項是容易出錯的?()A.準(zhǔn)確找到相鄰圖像之間的特征點進行匹配B.對匹配后的圖像進行幾何校正和投影變換C.直接將圖像拼接在一起,不進行任何過渡處理D.采用合適的融合算法,消除拼接處的明顯痕跡12、在計算機視覺的圖像修復(fù)任務(wù)中,假設(shè)圖像中有大面積的損壞或缺失區(qū)域,以下哪種方法可能更依賴于對圖像全局結(jié)構(gòu)的理解?()A.基于紋理合成的方法B.基于擴散的方法C.基于深度學(xué)習(xí)的方法D.基于樣例的方法13、假設(shè)我們要開發(fā)一個計算機視覺系統(tǒng),用于檢測生產(chǎn)線上產(chǎn)品的表面缺陷。由于產(chǎn)品的種類繁多、缺陷類型復(fù)雜,以下哪種方法可能需要更多的計算資源和時間來訓(xùn)練模型?()A.基于傳統(tǒng)機器學(xué)習(xí)的方法B.基于淺層神經(jīng)網(wǎng)絡(luò)的方法C.基于深度學(xué)習(xí)的方法D.基于模板匹配的方法14、在計算機視覺的立體視覺任務(wù)中,通過兩個或多個相機獲取的圖像來計算深度信息。以下哪種立體匹配算法在精度和效率方面可能表現(xiàn)較好?()A.基于區(qū)域的匹配算法B.基于特征的匹配算法C.基于深度學(xué)習(xí)的匹配算法D.以上都是15、假設(shè)要構(gòu)建一個能夠識別人臉表情的計算機視覺系統(tǒng),用于情感分析和人機交互??紤]到表情的細微變化和個體差異,以下哪種模型架構(gòu)可能更適合處理這種復(fù)雜的任務(wù)?()A.多層感知機B.卷積神經(jīng)網(wǎng)絡(luò)C.循環(huán)神經(jīng)網(wǎng)絡(luò)D.生成對抗網(wǎng)絡(luò)二、簡答題(本大題共3個小題,共15分)1、(本題5分)說明計算機視覺在自動駕駛領(lǐng)域的應(yīng)用及面臨的挑戰(zhàn)。2、(本題5分)解釋計算機視覺中的目標(biāo)檢測與圖像分類的區(qū)別。3、(本題5分)描述計算機視覺在海洋地質(zhì)災(zāi)害防治中的應(yīng)用。三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)使用目標(biāo)跟蹤算法,跟蹤舞蹈表演中舞者的姿態(tài)變化。2、(本題5分)運用深度學(xué)習(xí)模型,對古代陶瓷工藝品的制作工藝和年代進行鑒定。3、(本題5分)開發(fā)一個可以識別不同種類企鵝的計算機視覺應(yīng)用。4、(本題5分)通過圖像分類算法,對不同種類的植物葉片圖像進行分類。5、(本題5分)開發(fā)一個能夠識別不同種類昆蟲幼蟲的計算機視覺系統(tǒng)。四、分析題(本大題共3個小題,共30分)1、(本題10分)以一個環(huán)保組織的公益活動海報設(shè)計為對象,分析設(shè)計師如何運用視覺語

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論