![福建省福州市閩侯八中2024屆4月高三學業(yè)水平考試數學試題試卷_第1頁](http://file4.renrendoc.com/view12/M04/06/13/wKhkGWeQSySACh8uAAG0XzE5CV0651.jpg)
![福建省福州市閩侯八中2024屆4月高三學業(yè)水平考試數學試題試卷_第2頁](http://file4.renrendoc.com/view12/M04/06/13/wKhkGWeQSySACh8uAAG0XzE5CV06512.jpg)
![福建省福州市閩侯八中2024屆4月高三學業(yè)水平考試數學試題試卷_第3頁](http://file4.renrendoc.com/view12/M04/06/13/wKhkGWeQSySACh8uAAG0XzE5CV06513.jpg)
![福建省福州市閩侯八中2024屆4月高三學業(yè)水平考試數學試題試卷_第4頁](http://file4.renrendoc.com/view12/M04/06/13/wKhkGWeQSySACh8uAAG0XzE5CV06514.jpg)
![福建省福州市閩侯八中2024屆4月高三學業(yè)水平考試數學試題試卷_第5頁](http://file4.renrendoc.com/view12/M04/06/13/wKhkGWeQSySACh8uAAG0XzE5CV06515.jpg)
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
福建省福州市閩侯八中2023屆4月高三學業(yè)水平考試數學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知隨機變量服從正態(tài)分布,,()A. B. C. D.2.已知,,由程序框圖輸出的為()A.1 B.0 C. D.3.給出下列三個命題:①“”的否定;②在中,“”是“”的充要條件;③將函數的圖象向左平移個單位長度,得到函數的圖象.其中假命題的個數是()A.0 B.1 C.2 D.34.已知數列是以1為首項,2為公差的等差數列,是以1為首項,2為公比的等比數列,設,,則當時,的最大值是()A.8 B.9 C.10 D.115.在菱形中,,,,分別為,的中點,則()A. B. C.5 D.6.一個幾何體的三視圖如圖所示,則該幾何體的體積為()A. B.C. D.7.已知復數z滿足,則在復平面上對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.如圖,圓是邊長為的等邊三角形的內切圓,其與邊相切于點,點為圓上任意一點,,則的最大值為()A. B. C.2 D.9.正項等比數列中的、是函數的極值點,則()A. B.1 C. D.210.已知函數是定義在R上的奇函數,且滿足,當時,(其中e是自然對數的底數),若,則實數a的值為()A. B.3 C. D.11.已知符號函數sgnxf(x)是定義在R上的減函數,g(x)=f(x)﹣f(ax)(a>1),則()A.sgn[g(x)]=sgnx B.sgn[g(x)]=﹣sgnxC.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]12.若實數滿足的約束條件,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.函數在區(qū)間內有且僅有兩個零點,則實數的取值范圍是_____.14.已知函數,曲線與直線相交,若存在相鄰兩個交點間的距離為,則可取到的最大值為__________.15.某部門全部員工參加一項社會公益活動,按年齡分為三組,其人數之比為,現用分層抽樣的方法從總體中抽取一個容量為20的樣本,若組中甲、乙二人均被抽到的概率是,則該部門員工總人數為__________.16.在中,,點是邊的中點,則__________,________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)己知,,.(1)求證:;(2)若,求證:.18.(12分)為貫徹十九大報告中“要提供更多優(yōu)質生態(tài)產品以滿足人民日益增長的優(yōu)美生態(tài)環(huán)境需要”的要求,某生物小組通過抽樣檢測植物高度的方法來監(jiān)測培育的某種植物的生長情況.現分別從、、三塊試驗田中各隨機抽取株植物測量高度,數據如下表(單位:厘米):組組組假設所有植株的生長情況相互獨立.從、、三組各隨機選株,組選出的植株記為甲,組選出的植株記為乙,組選出的植株記為丙.(1)求丙的高度小于厘米的概率;(2)求甲的高度大于乙的高度的概率;(3)表格中所有數據的平均數記為.從、、三塊試驗田中分別再隨機抽取株該種植物,它們的高度依次是、、(單位:厘米).這個新數據與表格中的所有數據構成的新樣本的平均數記為,試比較和的大小.(結論不要求證明)19.(12分)已知函數.(1)討論的單調性并指出相應單調區(qū)間;(2)若,設是函數的兩個極值點,若,且恒成立,求實數k的取值范圍.20.(12分)已知函數.(Ⅰ)解不等式;(Ⅱ)設其中為常數.若方程在上恰有兩個不相等的實數根,求實數的取值范圍.21.(12分)某調查機構對某校學生做了一個是否同意生“二孩”抽樣調查,該調查機構從該校隨機抽查了100名不同性別的學生,調查統(tǒng)計他們是同意父母生“二孩”還是反對父母生“二孩”,現已得知100人中同意父母生“二孩”占60%,統(tǒng)計情況如下表:同意不同意合計男生a5女生40d合計100(1)求a,d的值,根據以上數據,能否有97.5%的把握認為是否同意父母生“二孩”與性別有關?請說明理由;(2)將上述調查所得的頻率視為概率,現在從所有學生中,采用隨機抽樣的方法抽取4位學生進行長期跟蹤調查,記被抽取的4位學生中持“同意”態(tài)度的人數為X,求X的分布列及數學期望.附:0.150.1000.0500.0250.0102.0722.7063.8415.0246.63522.(10分)在平面直角坐標系中,曲線的參數方程為(為參數),將曲線上每一點的橫坐標變?yōu)樵瓉淼谋叮v坐標不變,得到曲線,以坐標原點為極點,軸的正半軸為極軸建立極坐標系,射線與曲線交于點,將射線繞極點逆時針方向旋轉交曲線于點.(1)求曲線的參數方程;(2)求面積的最大值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
利用正態(tài)分布密度曲線的對稱性可得出,進而可得出結果.【詳解】,所以,.故選:B.【點睛】本題考查利用正態(tài)分布密度曲線的對稱性求概率,屬于基礎題.2.D【解析】試題分析:,,所以,所以由程序框圖輸出的為.故選D.考點:1、程序框圖;2、定積分.3.C【解析】
結合不等式、三角函數的性質,對三個命題逐個分析并判斷其真假,即可選出答案.【詳解】對于命題①,因為,所以“”是真命題,故其否定是假命題,即①是假命題;對于命題②,充分性:中,若,則,由余弦函數的單調性可知,,即,即可得到,即充分性成立;必要性:中,,若,結合余弦函數的單調性可知,,即,可得到,即必要性成立.故命題②正確;對于命題③,將函數的圖象向左平移個單位長度,可得到的圖象,即命題③是假命題.故假命題有①③.故選:C【點睛】本題考查了命題真假的判斷,考查了余弦函數單調性的應用,考查了三角函數圖象的平移變換,考查了學生的邏輯推理能力,屬于基礎題.4.B【解析】
根據題意計算,,,解不等式得到答案.【詳解】∵是以1為首項,2為公差的等差數列,∴.∵是以1為首項,2為公比的等比數列,∴.∴.∵,∴,解得.則當時,的最大值是9.故選:.【點睛】本題考查了等差數列,等比數列,f分組求和,意在考查學生對于數列公式方法的靈活運用.5.B【解析】
據題意以菱形對角線交點為坐標原點建立平面直角坐標系,用坐標表示出,再根據坐標形式下向量的數量積運算計算出結果.【詳解】設與交于點,以為原點,的方向為軸,的方向為軸,建立直角坐標系,則,,,,,所以.故選:B.【點睛】本題考查建立平面直角坐標系解決向量的數量積問題,難度一般.長方形、正方形、菱形中的向量數量積問題,如果直接計算較麻煩可考慮用建系的方法求解.6.A【解析】
根據題意,可得幾何體,利用體積計算即可.【詳解】由題意,該幾何體如圖所示:該幾何體的體積.故選:A.【點睛】本題考查了常見幾何體的三視圖和體積計算,屬于基礎題.7.A【解析】
設,由得:,由復數相等可得的值,進而求出,即可得解.【詳解】設,由得:,即,由復數相等可得:,解之得:,則,所以,在復平面對應的點的坐標為,在第一象限.故選:A.【點睛】本題考查共軛復數的求法,考查對復數相等的理解,考查復數在復平面對應的點,考查運算能力,屬于??碱}.8.C【解析】
建立坐標系,寫出相應的點坐標,得到的表達式,進而得到最大值.【詳解】以D點為原點,BC所在直線為x軸,AD所在直線為y軸,建立坐標系,設內切圓的半徑為1,以(0,1)為圓心,1為半徑的圓;根據三角形面積公式得到,可得到內切圓的半徑為可得到點的坐標為:故得到故得到,故最大值為:2.故答案為C.【點睛】這個題目考查了向量標化的應用,以及參數方程的應用,以向量為載體求相關變量的取值范圍,是向量與函數、不等式、三角函數等相結合的一類綜合問題.通過向量的運算,將問題轉化為解不等式或求函數值域,是解決這類問題的一般方法.9.B【解析】
根據可導函數在極值點處的導數值為,得出,再由等比數列的性質可得.【詳解】解:依題意、是函數的極值點,也就是的兩個根∴又是正項等比數列,所以∴.故選:B【點睛】本題主要考查了等比數列下標和性質以應用,屬于中檔題.10.B【解析】
根據題意,求得函數周期,利用周期性和函數值,即可求得.【詳解】由已知可知,,所以函數是一個以4為周期的周期函數,所以,解得,故選:B.【點睛】本題考查函數周期的求解,涉及對數運算,屬綜合基礎題.11.A【解析】
根據符號函數的解析式,結合f(x)的單調性分析即可得解.【詳解】根據題意,g(x)=f(x)﹣f(ax),而f(x)是R上的減函數,當x>0時,x<ax,則有f(x)>f(ax),則g(x)=f(x)﹣f(ax)>0,此時sgn[g(x)]=1,當x=0時,x=ax,則有f(x)=f(ax),則g(x)=f(x)﹣f(ax)=0,此時sgn[g(x)]=0,當x<0時,x>ax,則有f(x)<f(ax),則g(x)=f(x)﹣f(ax)<0,此時sgn[g(x)]=﹣1,綜合有:sgn[g(x)]=sgn(x);故選:A.【點睛】此題考查函數新定義問題,涉及函數單調性辨析,關鍵在于讀懂定義,根據自變量的取值范圍分類討論.12.B【解析】
根據所給不等式組,畫出不等式表示的可行域,將目標函數化為直線方程,平移后即可確定取值范圍.【詳解】實數滿足的約束條件,畫出可行域如下圖所示:將線性目標函數化為,則將平移,平移后結合圖像可知,當經過原點時截距最小,;當經過時,截距最大值,,所以線性目標函數的取值范圍為,故選:B.【點睛】本題考查了線性規(guī)劃的簡單應用,線性目標函數取值范圍的求法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
對函數零點問題等價轉化,分離參數討論交點個數,數形結合求解.【詳解】由題:函數在區(qū)間內有且僅有兩個零點,,等價于函數恰有兩個公共點,作出大致圖象:要有兩個交點,即,所以.故答案為:【點睛】此題考查函數零點問題,根據函數零點個數求參數的取值范圍,關鍵在于對函數零點問題恰當變形,等價轉化,數形結合求解.14.4【解析】
由于曲線與直線相交,存在相鄰兩個交點間的距離為,所以函數的周期,可得到的取值范圍,再由解出的兩類不同的值,然后列方程求出,再結合的取值范圍可得的最大值.【詳解】,可得,由,則或,即或,由題意得,所以,則或,所以可取到的最大值為4.故答案為:4【點睛】此題考查正弦函數的圖像和性質的應用及三角方程的求解,熟練應用三角函數的圖像和性質是解題的關鍵,考查了推理能力和計算能力,屬于中檔題.15.60【解析】
根據樣本容量及各組人數比,可求得C組中的人數;由組中甲、乙二人均被抽到的概率是可求得C組的總人數,即可由各組人數比求得總人數.【詳解】三組人數之比為,現用分層抽樣的方法從總體中抽取一個容量為20的樣本,則三組抽取人數分別.設組有人,則組中甲、乙二人均被抽到的概率,∴解得.∴該部門員工總共有人.故答案為:60.【點睛】本題考查了分層抽樣的定義與簡單應用,古典概型概率的簡單應用,由各層人數求總人數的應用,屬于基礎題.16.2【解析】
根據正弦定理直接求出,利用三角形的邊表示向量,然后利用向量的數量積求解即可.【詳解】中,,,可得因為點是邊的中點,所以故答案為:;.【點睛】本題主要考查了三角形的解法,向量的數量積的應用,考查計算能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)證明見解析(2)證明見解析【解析】
(1)采用分析法論證,要證,分式化整式為,再利用立方和公式轉化為,再作差提取公因式論證.(2)由基本不等式得,再用不等式的基本性質論證.【詳解】(1)要證,即證,即證,即證,即證,即證,該式顯然成立,當且僅當時等號成立,故.(2)由基本不等式得,,當且僅當時等號成立.將上面四式相加,可得,即.【點睛】本題考查證明不等式的方法、基本不等式,還考查推理論證能力以及化歸與轉化思想,屬于中檔題..18.(1);(2);(3).【解析】
設事件為“甲是組的第株植物”,事件為“乙是組的第株植物”,事件為“丙是組的第株植物”,、、、,可得出.(1)設事件為“丙的高度小于厘米”,可得,且、互斥,利用互斥事件的概率公式可求得結果;(2)設事件為“甲的高度大于乙的高度”,列舉出符合題意的基本事件,利用互斥事件的概率加法公式可求得所求事件的概率;(3)根據題意直接判斷和的大小即可.【詳解】設事件為“甲是組的第株植物”,事件為“乙是組的第株植物”,事件為“丙是組的第株植物”,、、、.由題意可知,、、、.(1)設事件為“丙的高度小于厘米”,由題意知,又與互斥,所以事件的概率;(2)設事件為“甲的高度大于乙的高度”.由題意知.所以事件的概率;(3).【點睛】本題考查概率的求法,考查互斥事件加法公式、相互獨立事件概率乘法公式等基礎知識,考查運算求解能力,是中等題.19.(1)答案見解析(2)【解析】
(1)先對函數進行求導得,對分成和兩種情況討論,從而得到相應的單調區(qū)間;(2)對函數求導得,從而有,,,三個方程中利用得到.將不等式的左邊轉化成關于的函數,再構造新函數利用導數研究函數的最小值,從而得到的取值范圍.【詳解】解:(1)由,,則,當時,則,故在上單調遞減;當時,令,所以在上單調遞減,在上單調遞增.綜上所述:當時,在上單調遞減;當時,在上單調遞減,在上單調遞增.(2)∵,,由得,∴,,∴∵∴解得.∴.設,則,∴在上單調遞減;當時,.∴,即所求的取值范圍為.【點睛】本題考查利用導數研究函數的單調性、最值,考查分類討論思想和數形結合思想,求解雙元問題的常用思路是:通過換元或消元,將雙元問題轉化為單元問題,然后利用導數研究單變量函數的性質.20.(Ⅰ);(Ⅱ).【解析】
(I)零點分段法,分,,討論即可;(II),分,,三種情況討論.【詳解】原不等式即.當時,化簡得.解得;當時,化簡得.此時無解;當時,化簡得.解得.綜上,原不等式的解集為由題意,設方程兩根為.當時,方程等價于方程.易知當,方程在上有兩個不相等的實數根.此時方程在上無解.滿足條件.當時,方程等價于方程,此時方程在上顯然沒有兩個不相等的實數根.當時,易知當,方程在上有且只有一個實數根.此時方程在上也有一個實數根.滿足條件.綜上,實數的取值范圍為.【點睛】本題考查解絕對值不等式以及方程根的個數求參數范圍,考查學生的運算能力,是一道中檔題.21.(1),有97.5%的把握認為是否同意父母生“二孩”與“性別”有關;(2)詳
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二手轎車買賣合同示范文本
- 個人車位贈與合同范本
- 臨時工勞動合同范本參考
- 2025年平安保險公司特定疾病終身保險賠付合同
- 業(yè)務合作合同格式樣本
- 不銹鋼采購與銷售合同
- 個人借款質押合同書樣本
- 專用線鐵路物流服務合同細則
- 個人與企業(yè)租賃合同范本大全
- 采購標準合同書
- 突發(fā)公共衛(wèi)生事件衛(wèi)生應急
- 《景觀設計》課件
- 會所股東合作協(xié)議書范文范本
- 人教版(2024)七年級上冊英語期中復習單項選擇100題(含答案)
- 2024年胡麻油市場前景分析:全球胡麻油市場規(guī)模達到了25.55億美元
- 小學英語800詞分類(默寫用)
- 《 西門塔爾牛臉數據集的研究》范文
- 八年級上冊 第三單元 11《簡愛》公開課一等獎創(chuàng)新教學設計
- 2024年燃氣輪機值班員技能鑒定理論知識考試題庫-上(單選題)
- 中小商業(yè)銀行數字化轉型現狀及對策研究
- 2024-2030年中國車載冰箱行業(yè)市場發(fā)展調研及投資戰(zhàn)略分析報告
評論
0/150
提交評論