版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
第三章《勾股定理》單元檢測(滿分:130分時間:90分鐘)一、選擇題(每題3分,共24分)1.三個正方形按圖示位置擺放,S表示面積,則S的大小為()A.10B.500C.300D.302.在Rt△ABC中,若∠C=90°,AC=9,.BC=12,則點C到AB的距離是()A.B.C.D.3.如圖,在Rt△ABC中,∠BAC=90°,∠ABC的平分線BD交AC于點D,DE是BC的垂直平分線,點E是垂足.已知DC=5,AD=3,則圖中長為4的線段的條數(shù)為()A.4B.3C.2D.14.下列命題是假命題的是()A.在△ABC扣,若∠B=∠C=∠A,則△ABC是直角三角形B.在△ABC中,若a2=(b+c)(b-c),則△ABC是直角三角形C.在△ABC中,若∠A:∠B:∠C=1:2:3,則△ABC是直角三角形D.在△ABC中,若a:b:c=5:4:3,則△ABC是直角三角形5.若等腰三角形底邊上的高為8,周長為32,則三角形的面積為()A.56B.48C.40D.326.如圖,在矩形紙片ABCD中,已知AD=8,折疊紙片使AB邊與對角線AC重合,點B落在點F處,折痕為AE.若EF=3,則AB的長為()A.3B.4C.5D.67.如圖,每個小正方形的邊長為1,若A,B,C是小正方形的頂點,則∠ABC的度數(shù)為()A.90°B.60°C.45°D.30°8.如圖,將一邊長為a的正方形(最中間的小正方形)與四個邊長為b的正方形(其中b>a)拼接在一起,則四邊形ABCD的面積為()A.b2+(b-a)2B.b2+a2C.(b+a)2D.a2+2ab二、填空題(每題3分,共30分)9.如圖所示是一株美麗的勾股樹,其中所有的四邊形都是正方形,所有的三角形都是直角三角形.若正方形A,B,C,D的邊長分別是3,4,2,3,則最大正方形E的面積是.10.若一個直角三角形的三邊長的平方和為200,則斜邊長為.11.在△ABC中,AB=5cm,BC=6cm,若BC邊上的中線AD=4cm,則∠ADC=.12.如圖,在四邊形ABCD中,AB:BC:CD:DA=2:2:3:1.若∠ABC=90°,則∠DAB=13.若一個三角形的三邊之比為5:12:13,且周長為60cm,則它的面積為cm2.14.已知a,b,c為三個正整數(shù),如果a+b+c=12,那么以a,b,c為邊能組成的三角形是:①等腰三角形;②等邊三角形;③直角三角形;④鈍角三角形.以上符合條件的正確結論是.(填序號)15.一座垂直于兩岸的橋長12米,一艘小船自橋北頭出發(fā),向正南方向駛去,因水流原因,到達南岸后,發(fā)現(xiàn)已偏離橋南頭9米,則小船實際行駛了米.16.如圖,在△ABC中,CD⊥AB,垂足為點D,E是AC的中點.若AD=6,DE=5,則CD的長等于.17.在銳角三角形ABC中.BC=,∠ABC=45°,BD平分∠ABC.若M,N分別是邊BD,BC上的動點,則CM+MN的最小值是.18.如圖,△ABC是邊長為6cm的等邊三角形,動點P,Q同時從A,B兩點出發(fā),分別在AB,BC邊上勻速移動,它們的速度分別為2cm/s和1cm/s,當點P到達點B時,P,Q兩點停止運動,設點P的運動時間為ts,則當t=s時,△PBQ為直角三角形.三、解答題(共76分)19.(本題6分)如圖,每個小方格的邊長都為1,求圖中格點四邊形ABCD的面積.20.(本題6分)如圖,在△ABC中,已知∠A=90°,D是BC的中點,且DE⊥BC,垂足為點D,交AB于點E.求證:BE2-EA2=AC2.21.(本題6分)一塊地如圖所示∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求這塊地的面積.22.(本題8分)如圖,在△ABC中,AB=AC=13,點D在邊BC上,AD=12,BD=5,試問AD平分∠BAC嗎?為什么?23.(本題8分)如圖,已知AB=12,AB⊥BC,垂足為點B,AB⊥AD,垂足為點A,AD=5,BC=10,點E是CD的中點,求AE的長.24.(本題8分)如圖,在等腰直角三角形ABC中,∠ABC=90°,D為邊AC的中點,過點D作DE⊥DF,交AB于點E,交BC于點F.若AE=4,F(xiàn)C=3,求EF的長.25.(本題10分)小東拿著一根長竹竿進一個寬為3米的城門,他先橫著拿,進不去,又豎起來拿,結果竿比城門高1米,當他把竿斜著時,兩端剛好頂著城門的對角,問:竿長多少米?26.(本題12分)如圖,將Rt△ABC繞其銳角頂點A旋轉90°得到Rt△ADE,連接BE,延長DE,BC相交于點F,則有∠BFE=90°,且四邊形ACFD是一個正方形.(1)判斷△ABE的形狀,并證明你的結論;(2)用含b的代數(shù)式表示四邊形ABFE的面積;(3)求證:a2+b2=c2.27.(本題12分)如圖,△ABC中,∠ABC=45°,CD⊥AB,BE⊥AC,垂足分別為點D,E,F(xiàn)為BC的中點,BE與DF,DC分別交于點G,H,∠ABE=∠CBE.(1)線段BH與AC相等嗎?若相等,請給予證明;若不相等,請說明理由.(2)求證:BG2-GE2=EA2.參考答案一、選擇題1.D2.A3.B4.A5.B6.D7.C8.A[提示:中間最小正方形四周的直角三角形的面積均為b(b-a),故所求四邊形的面積為4×b(b-a)+a2=b2+(b-a)2]二、填空題專業(yè)學習資料平臺網(wǎng)資源9.3810.1011.90°12.135°13.12014.①②③15.1516.817.4(提示:過點C作CE⊥AB,垂足為點E,線段CE的長即等于CM+MN的最小值)18.或[提示:AP=2tcm,BP=(6-2t)cm,BQ=tcn.當∠BQP=90°時,t=;當∠BPQ=90°時,t=]三、解答題19.連接AC.S四邊形ABCD=S△ADC+S△ABC=5×2×+5×3×=12.520.連接CE.∵D是BC的中點,DE⊥BC,∴BE=CE.∵∠A=90°,∴CE2-EA2=AC2,∴BE2-EA2=AC221.連接AC.∵∠ADC=90°,AD=12m,CD=9m,∴AC=15m.又∵AB=39m,BC=36m,∴AC2+BC2=AB2,∴∠ACB=90°,∴S△ABC=×15×36=270(m2),又S△ADC=×AD×DC=×12×9=54(m2),∴這塊地的面積為S△ABC—S△ADC=270-54=216(m2)22.AD平分∠BAC.∵AB=AC=13,AD=12,BD=5,∴BD2+AD2=AB2,∴△ABD是直角三角形,且∠ADB=∠ADC=90°,即AD⊥BC.又AB=AC,∴AD平分∠BAC,即結論成立23.延長AE交BC于點F.∵AB⊥BC,AB⊥AD,∴AD∥BC,∴∠D=∠C,∠DAE=∠CFE.又∵點E是CD的中點,∴DE=CE.∵在△AED與△FEC中,∠D=∠C,∠DAE=∠CFE,DE=CE,∴△AED≌△FEC,∴AE=FE,AD=FC.∵AD=5,BC=10,∴BF=5.在Rt△ABF中,AF2=AB2+BF2=169,∴AF=13,∴AE=6.524.連接BD.∵△ABC是等腰直角三角形,D為邊AC的中點,∴BD=DC,∠ABD=∠C=45°,BD⊥AC,∴∠BDF+∠FDC=90°.又∵DE⊥DF,∴∠BDF+∠BDE=90°,∴∠FDC=∠BDE,∴△BED≌△CFD,∴BE=FC=3,BF=BC-FC=AB-BE=AE=4.∴EF=525.設竿長x米,則城門高(x-1)米,根據(jù)題意得x2=(x-1)2+32,解得x=5.即竿長5米26.(1)△ABE是等腰直角三角形.證明:∵△ABC≌△AED,∴AB=AE,∠BAC=∠EAD,∴∠BAE=90°,即△ABE是等腰直角三角形(2)S四邊形ABFE=S四邊形ACFE+S△ABC=S四邊形ACFE+S△AED=S四邊形ACFD=b2(3)S四邊形ABFE=S△ABE+S△BEF=c2+(b-a)(b+a),由(2)知S四邊形ABFE=b2,即c2+(b-a)(b+a)=b2,∴a2+b2-c2(1)相等∵∠BDC=∠BEC=∠CDA=90°,∠ABC=45°,∴∠BCD=45°=∠ABC,∠A+∠DCA=90°,∠A+∠ABE=90°,∴DB=DC,∠ABE=∠DCA.在△DBH和△DCA中,∵∠DBH=∠DCA,∠BDH=∠
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45025-2024珊瑚礁生態(tài)修復監(jiān)測和效果評估技術指南
- 2024版智能安防系統(tǒng)建設合同3篇
- 二零二五版家具回收與環(huán)保處理服務合同2篇
- 2024版網(wǎng)絡技術服務外包合同
- 二零二五版建筑保溫施工與智能家居系統(tǒng)集成合同3篇
- 二零二五年度環(huán)保型廣告牌銷售、安裝及廣告內容合作合同3篇
- 2024版城市軌道交通設施維修保養(yǎng)合同
- 二零二五年度駕駛員押運員安全責任與聘用合同3篇
- 二零二五版文化創(chuàng)意產業(yè)擔保合同協(xié)議書2篇
- 2024版?zhèn)€人資金借用詳細協(xié)議協(xié)議版
- Unit 3 We should obey the rules. Lesson15(說課稿)-2023-2024學年人教精通版英語五年級下冊
- 綿陽市高中2022級(2025屆)高三第二次診斷性考試(二診)語文試卷(含答案)
- 2024年聊城市東昌府區(qū)中醫(yī)院招聘備案制工作人員考試真題
- 2025年極兔速遞有限公司招聘筆試參考題庫含答案解析
- 一般固廢處理流程
- 《健康體檢知識》課件
- 《AIGC應用實戰(zhàn)(慕課版)》-課程標準
- 政府機關辦公用品配送方案
- 生產計劃主管述職報告
- 永威置業(yè)項目交付前風險排查表
- 《儲能材料與器件》課程教學大綱(新能源材料與器件專業(yè))
評論
0/150
提交評論