版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁,總=sectionpages22頁第=page11頁,總=sectionpages11頁2025年滬教新版高一數(shù)學(xué)下冊階段測試試卷含答案考試試卷考試范圍:全部知識點;考試時間:120分鐘學(xué)校:______姓名:______班級:______考號:______總分欄題號一二三四五總分得分評卷人得分一、選擇題(共5題,共10分)1、已知集合則()A.B.C.D.2、已知則tanα的值為()A.-3B.-C.-3或-D.-3、在實數(shù)集R中定義一種運算“⊙”,具有性質(zhì):①對任意a、b∈R,a⊙b=b⊙a;②a⊙0=a;③對任意a、b∈R,(a⊙b)⊙c=(ab)⊙c+(a⊙c)+(b⊙c)﹣2c,則函數(shù)f(x)=x⊙的最小值是()A.2B.3C.D.4、如果直線的傾斜角為則有關(guān)系式()A.A=BB.A+B=0C.AB=1D.以上均不可能5、已知全集U=R,集合A={y|y=2x,x∈R},則()A.B.(0,+∞)C.(-∞,0]D.R評卷人得分二、填空題(共6題,共12分)6、函數(shù)y=lg(2+x)+lg(2-x)的圖象關(guān)于____對稱.(可填x軸、y軸、原點等等)7、【題文】設(shè)定義域為R的偶函數(shù)滿足:
對任意的
則★(填“>”、“<”或“=”)8、【題文】如圖,三棱錐中,分別為上的點,則周長最小值為____.
9、已知100名學(xué)生某月飲料消費支出情況的頻率分布直方圖如圖所示.則這100名學(xué)生中,該月飲料消費支出超過150元的人數(shù)是____.
10、已知向量=(1,2),=(a,﹣1),若則實數(shù)a的值為____.11、已知集合A={2,5,6},B={3,5},則集合A∪B=______.評卷人得分三、證明題(共9題,共18分)12、如圖;已知AB是⊙O的直徑,P是AB延長線上一點,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求證:
(1)AD=AE
(2)PC?CE=PA?BE.13、如圖;在△ABC中,AB=AC,AD⊥BC,垂足為D,E為AD的中點,DF⊥BE,垂足為F,CF交AD于點G.
求證:(1)∠CFD=∠CAD;
(2)EG<EF.14、AB是圓O的直徑,CD是圓O的一條弦,AB與CD相交于E,∠AEC=45°,圓O的半徑為1,求證:EC2+ED2=2.15、已知D是銳角△ABC外接圓劣弧的中點;弦AD與邊BC相交于點E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan的值.16、已知G是△ABC的重心,過A、G的圓與BG切于G,CG的延長線交圓于D,求證:AG2=GC?GD.17、如圖;已知AB是⊙O的直徑,P是AB延長線上一點,PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求證:
(1)AD=AE
(2)PC?CE=PA?BE.18、初中我們學(xué)過了正弦余弦的定義,例如sin30°=,同時也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根據(jù)如圖,設(shè)計一種方案,解決問題:
已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,設(shè)AB=c,AC=b;BC=a
(1)用b;c及α,β表示三角形ABC的面積S;
(2)sin(α+β)=sinαcosβ+cosαsinβ.19、求證:(1)周長為21的平行四邊形能夠被半徑為的圓面所覆蓋.
(2)桌面上放有一絲線做成的線圈,它的周長是2l,不管線圈形狀如何,都可以被個半徑為的圓紙片所覆蓋.20、如圖,設(shè)△ABC是直角三角形,點D在斜邊BC上,BD=4DC.已知圓過點C且與AC相交于F,與AB相切于AB的中點G.求證:AD⊥BF.評卷人得分四、計算題(共2題,共8分)21、若不等式|2x+1|-|2x-1|<a對任意實數(shù)x恒成立,則a的取值范圍是____.22、解關(guān)于x的不等式12x2﹣ax>a2(a∈R).評卷人得分五、綜合題(共2題,共16分)23、已知平面區(qū)域上;坐標(biāo)x,y滿足|x|+|y|≤1
(1)畫出滿足條件的區(qū)域L0;并求出面積S;
(2)對區(qū)域L0作一個內(nèi)切圓M1,然后在M1內(nèi)作一個內(nèi)接與此圓與L0相同形狀的圖形L1,在L1內(nèi)繼續(xù)作圓M2;經(jīng)過無數(shù)次后,求所有圓的面積的和.
(提示公式:)24、已知函數(shù)y1=px+q和y2=ax2+bx+c的圖象交于A(1,-1)和B(3,1)兩點,拋物線y2與x軸交點的橫坐標(biāo)為x1,x2,且|x1-x2|=2.
(1)求這兩個函數(shù)的解析式;
(2)設(shè)y2與y軸交點為C,求△ABC的面積.參考答案一、選擇題(共5題,共10分)1、B【分析】試題分析:集合表示的是大于1而小于4的所有實數(shù),所以.考點:集合的交集運算.【解析】【答案】B2、B【分析】【解答】∵cotα=.所以,tanα+=﹣
3tan2α+10tanα+3=0
所以,tanα=﹣3或﹣而
∴tanα=﹣
故選B.
【分析】通過方程tanα+cotα=﹣以及cotα=求出tanα,最后根據(jù)角的范圍進(jìn)行求解.3、B【分析】【解答】解:根據(jù)題意,得f(x)=x⊙=(x⊙)⊙0=0⊙(x?)+(x⊙0)+(⊙0)﹣2×0=1+x+
即f(x)=1+x+
∵x>0,可得x+≥2;當(dāng)且僅當(dāng)x=1時等號成立,由此可得函數(shù)f(x)的最小值為f(1)=3.
故選:B
【分析】根據(jù)題中給出的對應(yīng)法則,可得f(x)=(x⊙)⊙0=1+x+利用基本不等式求最值可得x+≥2,當(dāng)且僅當(dāng)x=1時等號成立,由此可得函數(shù)f(x)的最小值為f(1)=3.4、B【分析】【分析】因為直線的傾斜角為所以直線的斜率為1,即所以選B。
【點評】簡單題,應(yīng)熟練地由直線方程的一般式化為其它形式。5、C【分析】【解答】根據(jù)題意,由于全集集合A={y|y=2x,x∈R}=}={y|y>0},故有=故答案為C.
【分析】解決的關(guān)鍵是對于集合的補集的定義理解,以及指數(shù)函數(shù)的值域的求解,屬于基礎(chǔ)題。二、填空題(共6題,共12分)6、略
【分析】
∵f(x)=lg(2+x)+lg(2-x)
∴f(-x)=lg(2-x)+lg(2+x)=f(x)
又∵
∴-2<x<2
∴原函數(shù)得到定義域為(-2;2),關(guān)于原點對稱。
∴函數(shù)f(x)是偶函數(shù)。
∴f(x)的圖象關(guān)于y軸對稱。
故答案為:y軸。
【解析】【答案】由定義推導(dǎo)原函數(shù)的奇偶性即可。
7、略
【分析】【解析】略【解析】【答案】>8、略
【分析】【解析】
試題分析:將三棱錐側(cè)面沿剪開展成如下平面圖形:
可見三點共線時周長最小,為
考點:1、三棱錐的側(cè)面展開;2、三角形的邊角關(guān)系.【解析】【答案】9、30【分析】【解答】根據(jù)頻率分布直方圖;得;
消費支出超過150元的頻率(0.004+0.002)×50=0.3;
∴消費支出超過150元的人數(shù)是100×0.3=30.
故答案為:30.
【分析】根據(jù)頻率分布直方圖,利用頻率、頻數(shù)與樣本容量的關(guān)系,即可求出正確的結(jié)果。10、2【分析】【解答】解:∵∴=0;即1×a﹣2×1=0;
∴a=2.
故答案為:2.
【分析】令=0列方程解出.11、略
【分析】解:A∪B═{2;5,6}∪{3,5}={2,3,5,6}
故答案為:{2;3,5,6}
兩個集合的并集為屬于集合A或?qū)儆诩螧的元素;根據(jù)集合元素的互異性得到A∪B即可.
考查學(xué)生理解并集的定義,掌握集合元素的互異性.是一道基礎(chǔ)題.【解析】{2,3,5,6}三、證明題(共9題,共18分)12、略
【分析】【分析】(1)連AC;BC;OC,如圖,根據(jù)切線的性質(zhì)得到OC⊥PD,而AD⊥PC,則OC∥PD,得∠ACO=∠CAD,則∠DAC=∠CAO,根據(jù)三角形相似的判定易證得Rt△ACE≌Rt△ACD;
即可得到結(jié)論;
(2)根據(jù)三角形相似的判定易證Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到結(jié)論.【解析】【解答】證明:(1)連AC、BC,OC,如圖,
∵PC是⊙O的切線;
∴OC⊥PD;
而AD⊥PC;
∴OC∥PD;
∴∠ACO=∠CAD;
而∠ACO=∠OAC;
∴∠DAC=∠CAO;
又∵CE⊥AB;
∴∠AEC=90°;
∴Rt△ACE≌Rt△ACD;
∴CD=CE;AD=AE;
(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;
∴Rt△PCE∽Rt△PAD;
∴PC:PA=CE:AD;
又∵AB為⊙O的直徑;
∴∠ACB=90°;
而∠DAC=∠CAO;
∴Rt△EBC∽Rt△DCA;
∴BE:CE=CD:AD;
而CD=CE;
∴BE:CE=CE:AD;
∴BE:CE=PC:PA;
∴PC?CE=PA?BE.13、略
【分析】【分析】(1)連接AF,并延長交BC于N,根據(jù)相似三角形的判定定理證△BDF∽△DEF,推出,=;再證△CDF∽△AEF,推出∠CFD=∠AFE,證出A;F、D、C四點共圓即可;
(2)根據(jù)已知推出∠EFG=∠ABD,證F、N、D、G四點共圓,推出∠EGF=∠AND,根據(jù)三角形的外角性質(zhì)推出∠EGF>∠EFG即可.【解析】【解答】(1)證明:連接AF,并延長交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
則=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四點共圓;
∴∠CFD=∠CAD.
(2)證明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四點共圓;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.14、略
【分析】【分析】首先作CD關(guān)于AB的對稱直線FG,由∠AEC=45°,即可證得CD⊥FG,由勾股定理即可求得CG2=CE2+ED2,然后由△OCD≌△OGF,易證得O,C,G,E四點共圓,則可求得CG2=OC2+OG2=2.繼而證得EC2+ED2=2.【解析】【解答】證明:作CD關(guān)于AB的對稱直線FG;
∵∠AEC=45°;
∴∠AEF=45°;
∴CD⊥FG;
∴CG2=CE2+EG2;
即CG2=CE2+ED2;
∵△OCD≌△OGF(SSS);
∴∠OCD=∠OGF.
∴O;C,G,E四點共圓.
∴∠COG=∠CEG=90°.
∴CG2=OC2+OG2=2.
∴EC2+ED2=2.15、略
【分析】【分析】(1)求出∠BAD=∠CAD,根據(jù)角平分線性質(zhì)推出=;代入求出即可;
(2)作BF⊥AC于F;求出AB=BC,根據(jù)等腰三角形性質(zhì)求出AF=CF,根據(jù)三角函數(shù)的定義求出即可;
(3)BF過圓心O,作OM⊥BC于M,求出BF,根據(jù)銳角三角函數(shù)的定義求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;
∴∠BAD=∠CAD;
∴;
∴.
答:EC:CB的值是.
(2)作BF⊥AC于F;
∵=,=;
∴BA=BC;
∴F為AC中點;
∴cosC==.
答:cosC的值是.
(3)BF過圓心O;作OM⊥BC于M;
由勾股定理得:BF==CF;
∴tan.
答:tan的值是.16、略
【分析】【分析】構(gòu)造以重心G為頂點的平行四邊形GBFC,并巧用A、D、F、C四點共圓巧證乘積.延長GP至F,使PF=PG,連接FB、FC、AD.因G是重心,故AG=2GP.因GBFC是平行四邊形,故GF=2GP.從而AG=GF.又∠1=∠2=∠3=∠D,故A、D、F、C四點共圓,從而GA、GF=GC?GD.于是GA2=GC?GD.【解析】【解答】證明:延長GP至F;使PF=PG,連接AD,BF,CF;
∵G是△ABC的重心;
∴AG=2GP;BP=PC;
∵PF=PG;
∴四邊形GBFC是平行四邊形;
∴GF=2GP;
∴AG=GF;
∵BG∥CF;
∴∠1=∠2
∵過A;G的圓與BG切于G;
∴∠3=∠D;
又∠2=∠3;
∴∠1=∠2=∠3=∠D;
∴A;D、F、C四點共圓;
∴GA;GF=GC?GD;
即GA2=GC?GD.17、略
【分析】【分析】(1)連AC;BC;OC,如圖,根據(jù)切線的性質(zhì)得到OC⊥PD,而AD⊥PC,則OC∥PD,得∠ACO=∠CAD,則∠DAC=∠CAO,根據(jù)三角形相似的判定易證得Rt△ACE≌Rt△ACD;
即可得到結(jié)論;
(2)根據(jù)三角形相似的判定易證Rt△PCE∽Rt△PAD,Rt△EBC∽Rt△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到結(jié)論.【解析】【解答】證明:(1)連AC、BC,OC,如圖,
∵PC是⊙O的切線;
∴OC⊥PD;
而AD⊥PC;
∴OC∥PD;
∴∠ACO=∠CAD;
而∠ACO=∠OAC;
∴∠DAC=∠CAO;
又∵CE⊥AB;
∴∠AEC=90°;
∴Rt△ACE≌Rt△ACD;
∴CD=CE;AD=AE;
(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;
∴Rt△PCE∽Rt△PAD;
∴PC:PA=CE:AD;
又∵AB為⊙O的直徑;
∴∠ACB=90°;
而∠DAC=∠CAO;
∴Rt△EBC∽Rt△DCA;
∴BE:CE=CD:AD;
而CD=CE;
∴BE:CE=CE:AD;
∴BE:CE=PC:PA;
∴PC?CE=PA?BE.18、略
【分析】【分析】(1)過點C作CE⊥AB于點E;根據(jù)正弦的定義可以表示出CE的長度,然后利用三角形的面積公式列式即可得解;
(2)根據(jù)S△ABC=S△ABD+S△ACD列式,然后根據(jù)正弦與余弦的定義分別把BD、AD、CD,AB,AC轉(zhuǎn)化為三角形函數(shù),代入整理即可得解.【解析】【解答】解:(1)過點C作CE⊥AB于點E;
則CE=AC?sin(α+β)=bsin(α+β);
∴S=AB?CE=c?bsin(α+β)=bcsin(α+β);
即S=bcsin(α+β);
(2)根據(jù)題意,S△ABC=S△ABD+S△ACD;
∵AD⊥BC;
∴AB?ACsin(α+β)=BD?AD+CD?AD;
∴sin(α+β)=;
=+;
=sinαcosβ+cosαsinβ.19、略
【分析】【分析】(1)關(guān)鍵在于圓心位置;考慮到平行四邊形是中心對稱圖形,可讓覆蓋圓圓心與平行四邊形對角線交點疊合.
(2)“曲“化“直“.對比(1),應(yīng)取均分線圈的二點連線段中點作為覆蓋圓圓心.【解析】【解答】
證明:(1)如圖1;設(shè)ABCD的周長為2l,BD≤AC,AC;BD交于O,P為周界上任意一點,不妨設(shè)在AB上;
則∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.
因此周長為2l的平行四邊形ABCD可被以O(shè)為圓心;半徑為的圓所覆蓋;命題得證.
(2)如圖2,在線圈上分別取點R,Q,使R、Q將線圈分成等長兩段,每段各長l.又設(shè)RQ中點為G,M為線圈上任意一點,連MR、MQ,則GM≤(MR+MQ)≤(MmR+MnQ)=
因此,以G為圓心,長為半徑的圓紙片可以覆蓋住整個線圈.20、略
【分析】【分析】作DE⊥AC于E,由切割線定理:AG2=AF?AC,可證明△BAF∽△AED,則∠ABF+∠DAB=90°,從而得出AD⊥BF.【解析】【解答】證明:作DE⊥AC于E;
則AC=AE;AB=5DE;
又∵G是AB的中點;
∴AG=ED.
∴ED2=AF?AE;
∴5ED2=AF?AE;
∴AB?ED=AF?AE;
∴=;
∴△BAF∽△AED;
∴∠ABF=∠EAD;
而∠EAD+∠DAB=90°;
∴∠ABF+∠DAB=90°;
即AD⊥BF.四、計算題(共2題,共8分)21、略
【分析】【分析】將x的值進(jìn)行分段討論,①x<-,②-≤x<,③x≥,從而可分別將絕對值符號去掉,得出a的范圍,綜合起來即可得出a的范圍.【解析】【解答】解:當(dāng)①x<-時;原不等式可化為:-1-2x-(1-2x)<a,即-2<a;
解得:a>-2;
②當(dāng)-≤x<時;原不等式可化為:2x+1-(1-2x)<a,即4x<a;
此時可解得a>-2;
③當(dāng)x≥時;原不等式可化為:2x+1-(2x-1)<a,即2<a;
解得:a>2;
綜合以上a的三個范圍可得a>2;
故答案為:a>2.22、解:由12x2﹣ax﹣a2>0?(4x+a)(3x﹣a)>0?(x+)(x﹣)>0,①a>0時,﹣<解集為{x|x<﹣或x>};
②a=0時,x2>0;解集為{x|x∈R且x≠0};
③a<0時,﹣>解集為{x|x<或x>﹣}.
綜上,當(dāng)a>0時,﹣<解集為{x|x<﹣或x>};
當(dāng)a=0時,x2>0;解集為{x|x∈R且x≠0};
當(dāng)a<0時,﹣>解集為{x|x<或x>﹣}【分析】【分析】把原不等式的右邊移項到左邊,因式分解后,分a大于0,a=0和a小于0三種情況分別利用取解集的方法得到不等式的解集即可.五、綜合題(共2題,共16分)23、略
【分析】【分析】(1)根據(jù)絕對值的性質(zhì)去掉絕對值號,作出|x|+|y|≤1的線性規(guī)劃區(qū)域即可得到區(qū)域L0;然后根據(jù)正方形的面積等于對角線乘積的一半進(jìn)行求解即可;
(2)求出M1、M2的面積,然后根據(jù)求解規(guī)律,后一個圓得到面積等于前一個圓的面積
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年消防給水工程智能化施工及維護(hù)服務(wù)合同3篇
- 2025變頻器代理商銷售合同:產(chǎn)品價格調(diào)整與結(jié)算協(xié)議3篇
- 2025年度紡織行業(yè)新材料研發(fā)與應(yīng)用采購合同2篇
- 2025年度工業(yè)倉儲租賃及倉儲設(shè)施維護(hù)保養(yǎng)合同范本3篇
- 二零二五年房地產(chǎn)項目工程造價咨詢合同模板3篇
- 二零二四年員工自愿放棄社保及轉(zhuǎn)移待遇合同3篇
- 2025年度藝術(shù)展布展藝術(shù)品保護(hù)與搬運合同3篇
- 二零二五版二手房交易中介服務(wù)合同模板2篇
- 2024虛擬現(xiàn)實內(nèi)容開發(fā)制作合同
- 2025年消防噴淋系統(tǒng)安裝及消防設(shè)施檢測與維保服務(wù)合同3篇
- 《FANUC-Oi數(shù)控銑床加工中心編程技巧與實例》教學(xué)課件(全)
- 微信小程序運營方案課件
- 抖音品牌視覺識別手冊
- 陳皮水溶性總生物堿的升血壓作用量-效關(guān)系及藥動學(xué)研究
- 安全施工專項方案報審表
- 學(xué)習(xí)解讀2022年新制定的《市場主體登記管理條例實施細(xì)則》PPT匯報演示
- 好氧廢水系統(tǒng)調(diào)試、驗收、運行、維護(hù)手冊
- 中石化ERP系統(tǒng)操作手冊
- 五年級上冊口算+脫式計算+豎式計算+方程
- 氣體管道安全管理規(guī)程
- 《眼科學(xué)》題庫
評論
0/150
提交評論