版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
…………○…………內(nèi)…………○…………裝…………○…………內(nèi)…………○…………裝…………○…………訂…………○…………線…………○…………※※請(qǐng)※※不※※要※※在※※裝※※訂※※線※※內(nèi)※※答※※題※※…………○…………外…………○…………裝…………○…………訂…………○…………線…………○…………第=page22頁(yè),總=sectionpages22頁(yè)第=page11頁(yè),總=sectionpages11頁(yè)2025年人教新課標(biāo)高一數(shù)學(xué)下冊(cè)月考試卷含答案考試試卷考試范圍:全部知識(shí)點(diǎn);考試時(shí)間:120分鐘學(xué)校:______姓名:______班級(jí):______考號(hào):______總分欄題號(hào)一二三四五總分得分評(píng)卷人得分一、選擇題(共5題,共10分)1、【題文】在△ABC中三條邊a,b,c成等比數(shù)列,且b=B=則△ABC的面積為()A.B.C.D.2、【題文】已知集合M=N=則()A.B.C.D.3、【題文】已知集合則()A.{(0,1),(1,3)}B.RC.(0,+∞)D.[)4、已知函數(shù)的圖象與x軸的兩個(gè)相鄰交點(diǎn)的距離等于則為得到函數(shù)的圖象可以把函數(shù)的圖象上所有的點(diǎn)()A.向右平移再將所得圖象上所有的點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的2倍B.向右平移再將所得圖象上所有的點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的2倍C.向左平移再將所得圖象上所有的點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的0.5倍D.向左平移再將所得圖象上所有的點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的2倍5、函數(shù)的圖象關(guān)于()對(duì)稱A.原點(diǎn)B.x軸C.y軸D.直線評(píng)卷人得分二、填空題(共7題,共14分)6、已知函數(shù)y=acos(2x+)+3,x∈[0,]的最大值為4,則實(shí)數(shù)a的值為_(kāi)___.7、設(shè)函數(shù)f(x)=若f(x)是奇函數(shù),則g(2)的值是____.8、函數(shù)的定義域?yàn)開(kāi)___9、【題文】函數(shù)的定義域?yàn)開(kāi)___10、cos+tan(﹣)+sin21π的值為_(kāi)___.11、設(shè)集合A={1,2},B={2,a},若A∪B={1,2,4},則a=______.12、已知a=b=c=則a,b,c大小關(guān)系為_(kāi)_____.評(píng)卷人得分三、證明題(共9題,共18分)13、如圖;已知AB是⊙O的直徑,P是AB延長(zhǎng)線上一點(diǎn),PC切⊙O于C,AD⊥PC于D,CE⊥AB于E,求證:
(1)AD=AE
(2)PC?CE=PA?BE.14、求證:(1)周長(zhǎng)為21的平行四邊形能夠被半徑為的圓面所覆蓋.
(2)桌面上放有一絲線做成的線圈,它的周長(zhǎng)是2l,不管線圈形狀如何,都可以被個(gè)半徑為的圓紙片所覆蓋.15、已知D是銳角△ABC外接圓劣弧的中點(diǎn);弦AD與邊BC相交于點(diǎn)E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan的值.16、如圖,已知:D、E分別為△ABC的AB、AC邊上的點(diǎn),DE∥BC,BE與CD交于點(diǎn)O,直線AO與BC邊交于M,與DE交于N,求證:BM=MC.17、如圖,設(shè)△ABC是直角三角形,點(diǎn)D在斜邊BC上,BD=4DC.已知圓過(guò)點(diǎn)C且與AC相交于F,與AB相切于AB的中點(diǎn)G.求證:AD⊥BF.18、如圖;在△ABC中,AB=AC,AD⊥BC,垂足為D,E為AD的中點(diǎn),DF⊥BE,垂足為F,CF交AD于點(diǎn)G.
求證:(1)∠CFD=∠CAD;
(2)EG<EF.19、初中我們學(xué)過(guò)了正弦余弦的定義,例如sin30°=,同時(shí)也知道,sin(30°+30°)=sin60°≠sin30°+sin30°;根據(jù)如圖,設(shè)計(jì)一種方案,解決問(wèn)題:
已知在任意的三角形ABC中,AD⊥BC,∠BAD=α,∠CAD=β,設(shè)AB=c,AC=b;BC=a
(1)用b;c及α,β表示三角形ABC的面積S;
(2)sin(α+β)=sinαcosβ+cosαsinβ.20、已知D是銳角△ABC外接圓劣弧的中點(diǎn);弦AD與邊BC相交于點(diǎn)E,而且AB:AC=2:1,AB:EC=3:1.求:
(1)EC:CB的值;
(2)cosC的值;
(3)tan的值.21、如圖,已知:D、E分別為△ABC的AB、AC邊上的點(diǎn),DE∥BC,BE與CD交于點(diǎn)O,直線AO與BC邊交于M,與DE交于N,求證:BM=MC.評(píng)卷人得分四、作圖題(共4題,共36分)22、如圖A、B兩個(gè)村子在河CD的同側(cè),A、B兩村到河的距離分別為AC=1千米,BD=3千米,且知道CD=3千米,現(xiàn)在要在河邊CD上建一水廠,向A、B兩村送自來(lái)水,鋪設(shè)管道費(fèi)用為每千米2000元,請(qǐng)你在CD上選擇水廠位置O,使鋪設(shè)管道的費(fèi)用最省,并求出其費(fèi)用.23、作出函數(shù)y=的圖象.24、某潛艇為躲避反潛飛機(jī)的偵查,緊急下潛50m后,又以15km/h的速度,沿北偏東45°前行5min,又以10km/h的速度,沿北偏東60°前行8min,最后擺脫了反潛飛機(jī)的偵查.試畫(huà)出潛艇整個(gè)過(guò)程的位移示意圖.25、繪制以下算法對(duì)應(yīng)的程序框圖:
第一步;輸入變量x;
第二步,根據(jù)函數(shù)f(x)=
對(duì)變量y賦值;使y=f(x);
第三步,輸出變量y的值.評(píng)卷人得分五、解答題(共2題,共4分)26、【題文】設(shè)函數(shù)
(1)若在其定義域內(nèi)為單調(diào)遞增函數(shù),求實(shí)數(shù)的取值范圍;
(2)設(shè)且若在上至少存在一點(diǎn)使得成立,求實(shí)數(shù)的取值范圍.27、求函數(shù)f(x)=sin(x+婁脨6)
在x
取得何值時(shí)達(dá)到最大值?在x
取得何值時(shí)達(dá)到最小值?參考答案一、選擇題(共5題,共10分)1、C【分析】【解析】選C.由已知可得b2=ac,又b=則ac=3,
又B=∴S△ABC=acsinB=×3×=【解析】【答案】C2、C【分析】【解析】
試題分析:
考點(diǎn):集合交集運(yùn)算。
點(diǎn)評(píng):集合的交集是由兩集合的相同的元素構(gòu)成的【解析】【答案】C3、D【分析】【解析】因?yàn)榧螦表示的集合為實(shí)數(shù)集,集合B表示的為大于等于的實(shí)數(shù)集,那么可知交集為選D【解析】【答案】D4、A【分析】【分析】先利用兩角差的正弦公式將函數(shù)f(x)=sinωx-cosωx化為y=Asin(ωx+φ)的形式;再利用周期公式計(jì)算ω的值,最后由三角函數(shù)圖象變換理論作出正確判斷。
【解答】∵f(x)=sinωx-cosωx=2(sinωx-cosωx)=2sin(ωx-)
又∵f(x)的圖象與x軸的兩個(gè)相鄰交點(diǎn)的距離等于
∴函數(shù)f(x)的最小正周期為T(mén)=2×=π
∴2π/ω=π;ω=2
∴f(x)=2sin(2x-)=2sin2(x-);
∴為得到函數(shù)y=f(x)的圖象可以把函數(shù)y=sin2x的圖象上所有的點(diǎn)向右平移得y=sin2(x-)的圖象,再將所得圖象上所有的點(diǎn)的縱坐標(biāo)變?yōu)樵瓉?lái)的2倍,得y=2sin2(x-)的圖象。
故選A.
【點(diǎn)評(píng)】本題考查了三角變換公式的應(yīng)用,三角函數(shù)的圖象和性質(zhì),周期公式,三角函數(shù)圖象變換的方法等基礎(chǔ)知識(shí)5、A【分析】【分析】解決函數(shù)問(wèn)題,首先需要確定函數(shù)的定義域,本題中求得函數(shù)的定義域?yàn)楸绢}的解題關(guān)鍵是函數(shù)的奇偶性的應(yīng)用。故函數(shù)的奇函數(shù),其圖像關(guān)于原點(diǎn)對(duì)稱,選A。
【點(diǎn)評(píng)】解決此類(lèi)問(wèn)題的關(guān)鍵是熟練函數(shù)奇偶性的判斷方法,對(duì)于一般的對(duì)稱問(wèn)題,作為選擇題來(lái)說(shuō),可以選取特殊值來(lái)判斷二、填空題(共7題,共14分)6、略
【分析】
∵x∈[0,];
∴2x+∈[];
∴-1≤cos(2x+)≤
當(dāng)a>0時(shí),-a≤acos(2x+)≤a;
∵ymax=4;
∴a+3=4;
∴a=2;
當(dāng)a<0時(shí),a≤acos(2x+)≤-a
同理可得3-a=4;
∴a=-1.
綜上所述;實(shí)數(shù)a的值為2或-1.
故答案為:2或-1.
【解析】【答案】由x∈[0,]?2x+∈[];利用余弦函數(shù)的單調(diào)性,結(jié)合題意即可求得實(shí)數(shù)a的值.
7、略
【分析】
∵f(x)=
∴當(dāng)x>0時(shí);-x<0;
∴f(-x)=2(-x)+1=-2x+1;又f(x)是奇函數(shù);
∴-f(x)=-2x+1;
∴f(x)=2x-1.
即x>0時(shí);f(x)=2x-1.
∵x>0時(shí);f(x)=g(x);
∴g(x)=2x-1(x>0).
∴g(2)=3.
故答案為:3.
【解析】【答案】利用奇函數(shù)的概念f(-x)=-f(x)可求得g(x);從而可求得g(2)的值.
8、略
【分析】因?yàn)楹瘮?shù)的定義域即滿足解得為{x︱x≤4且x≠1}【解析】【答案】{x︱x≤4且x≠1}9、略
【分析】【解析】
試題分析:要使函數(shù)有意義需滿足
考點(diǎn):函數(shù)定義域。
點(diǎn)評(píng):函數(shù)定義域是使函數(shù)有意義的自變量的取值范圍或題目中給定的自變量的范圍【解析】【答案】10、【分析】【解答】解:cos+tan(﹣)+sin21π
=cos(2π+)﹣tan(π+)+0
=cos﹣tan
=.
故答案為:.
【分析】利用誘導(dǎo)公式,特殊角的三角函數(shù)值即可化簡(jiǎn)求值得解.11、略
【分析】解:∵集合A={1;2},B={2,a};
A∪B={1;2,4};
∴a=4.
故答案為:4.
利用并集定義及運(yùn)算法則求解.
本題考查實(shí)數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意并集定義及運(yùn)算法則的合理運(yùn)用.【解析】412、略
【分析】解:∵
又∵函數(shù)y=在(0;+∞)是增函數(shù);
∴>0.
所以,c>b>a.
故答案為c>b>a.
由對(duì)數(shù)式的運(yùn)算性質(zhì)得到a<0,由冪函數(shù)的單調(diào)性得到c>b>0;所以答案可求.
本題考查了對(duì)數(shù)式的運(yùn)算性質(zhì),考查了冪函數(shù)的性質(zhì),是基礎(chǔ)的不等式大小比較問(wèn)題.【解析】c>b>a三、證明題(共9題,共18分)13、略
【分析】【分析】(1)連AC;BC;OC,如圖,根據(jù)切線的性質(zhì)得到OC⊥PD,而AD⊥PC,則OC∥PD,得∠ACO=∠CAD,則∠DAC=∠CAO,根據(jù)三角形相似的判定易證得Rt△ACE≌Rt△ACD;
即可得到結(jié)論;
(2)根據(jù)三角形相似的判定易證Rt△PCE∽R(shí)t△PAD,Rt△EBC∽R(shí)t△DCA,得到PC:PA=CE:AD,BE:CE=CD:AD,而CD=CE,即可得到結(jié)論.【解析】【解答】證明:(1)連AC、BC,OC,如圖,
∵PC是⊙O的切線;
∴OC⊥PD;
而AD⊥PC;
∴OC∥PD;
∴∠ACO=∠CAD;
而∠ACO=∠OAC;
∴∠DAC=∠CAO;
又∵CE⊥AB;
∴∠AEC=90°;
∴Rt△ACE≌Rt△ACD;
∴CD=CE;AD=AE;
(2)在Rt△PCE和Rt△PAD中;∠CPE=∠APD;
∴Rt△PCE∽R(shí)t△PAD;
∴PC:PA=CE:AD;
又∵AB為⊙O的直徑;
∴∠ACB=90°;
而∠DAC=∠CAO;
∴Rt△EBC∽R(shí)t△DCA;
∴BE:CE=CD:AD;
而CD=CE;
∴BE:CE=CE:AD;
∴BE:CE=PC:PA;
∴PC?CE=PA?BE.14、略
【分析】【分析】(1)關(guān)鍵在于圓心位置;考慮到平行四邊形是中心對(duì)稱圖形,可讓覆蓋圓圓心與平行四邊形對(duì)角線交點(diǎn)疊合.
(2)“曲“化“直“.對(duì)比(1),應(yīng)取均分線圈的二點(diǎn)連線段中點(diǎn)作為覆蓋圓圓心.【解析】【解答】
證明:(1)如圖1;設(shè)ABCD的周長(zhǎng)為2l,BD≤AC,AC;BD交于O,P為周界上任意一點(diǎn),不妨設(shè)在AB上;
則∠1≤∠2≤∠3,有OP≤OA.又AC<AB+BC=l,故OA<.
因此周長(zhǎng)為2l的平行四邊形ABCD可被以O(shè)為圓心;半徑為的圓所覆蓋;命題得證.
(2)如圖2,在線圈上分別取點(diǎn)R,Q,使R、Q將線圈分成等長(zhǎng)兩段,每段各長(zhǎng)l.又設(shè)RQ中點(diǎn)為G,M為線圈上任意一點(diǎn),連MR、MQ,則GM≤(MR+MQ)≤(MmR+MnQ)=
因此,以G為圓心,長(zhǎng)為半徑的圓紙片可以覆蓋住整個(gè)線圈.15、略
【分析】【分析】(1)求出∠BAD=∠CAD,根據(jù)角平分線性質(zhì)推出=;代入求出即可;
(2)作BF⊥AC于F;求出AB=BC,根據(jù)等腰三角形性質(zhì)求出AF=CF,根據(jù)三角函數(shù)的定義求出即可;
(3)BF過(guò)圓心O,作OM⊥BC于M,求出BF,根據(jù)銳角三角函數(shù)的定義求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;
∴∠BAD=∠CAD;
∴;
∴.
答:EC:CB的值是.
(2)作BF⊥AC于F;
∵=,=;
∴BA=BC;
∴F為AC中點(diǎn);
∴cosC==.
答:cosC的值是.
(3)BF過(guò)圓心O;作OM⊥BC于M;
由勾股定理得:BF==CF;
∴tan.
答:tan的值是.16、略
【分析】【分析】延長(zhǎng)AM,過(guò)點(diǎn)B作CD的平行線與AM的延長(zhǎng)線交于點(diǎn)F,再連接CF.根據(jù)平行線分線段成比例的性質(zhì)和逆定理可得CF∥BE,根據(jù)平行四邊形的判定和性質(zhì)即可得證.【解析】【解答】證明:延長(zhǎng)AM;過(guò)點(diǎn)B作CD的平行線與AM的延長(zhǎng)線交于點(diǎn)F,再連接CF.
又∵DE∥BC;
∴;
∴CF∥BE;
從而四邊形OBFC為平行四邊形;
所以BM=MC.17、略
【分析】【分析】作DE⊥AC于E,由切割線定理:AG2=AF?AC,可證明△BAF∽△AED,則∠ABF+∠DAB=90°,從而得出AD⊥BF.【解析】【解答】證明:作DE⊥AC于E;
則AC=AE;AB=5DE;
又∵G是AB的中點(diǎn);
∴AG=ED.
∴ED2=AF?AE;
∴5ED2=AF?AE;
∴AB?ED=AF?AE;
∴=;
∴△BAF∽△AED;
∴∠ABF=∠EAD;
而∠EAD+∠DAB=90°;
∴∠ABF+∠DAB=90°;
即AD⊥BF.18、略
【分析】【分析】(1)連接AF,并延長(zhǎng)交BC于N,根據(jù)相似三角形的判定定理證△BDF∽△DEF,推出,=;再證△CDF∽△AEF,推出∠CFD=∠AFE,證出A;F、D、C四點(diǎn)共圓即可;
(2)根據(jù)已知推出∠EFG=∠ABD,證F、N、D、G四點(diǎn)共圓,推出∠EGF=∠AND,根據(jù)三角形的外角性質(zhì)推出∠EGF>∠EFG即可.【解析】【解答】(1)證明:連接AF,并延長(zhǎng)交BC于N,
∵AD⊥BC;DF⊥BE;
∴∠DFE=∠ADB;
∴∠BDF=∠DEF;
∵BD=DC;DE=AE;
∵∠BDF=∠DEF;∠EFD=∠BFD=90°;
∴△BDF∽△DEF;
∴=;
則=;
∵∠AEF=∠CDF;
∴△CDF∽△AEF;
∴∠CFD=∠AFE;
∴∠CFD+∠AEF=90°;
∴∠AFE+∠CFE=90°;
∴∠ADC=∠AFC=90°;
∴A;F、D、C四點(diǎn)共圓;
∴∠CFD=∠CAD.
(2)證明:∵∠BAD+∠ABD=90°;∠CFD+∠EFG=∠EFD=90°,∠CFD=∠CAD=∠BAD;
∴∠EFG=∠ABD;
∵CF⊥AD;AD⊥BC;
∴F;N、D、G四點(diǎn)共圓;
∴∠EGF=∠AND;
∵∠AND>∠ABD;∠EFG=∠ABD;
∴∠EGF>∠EFG;
∴DG<EF.19、略
【分析】【分析】(1)過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E;根據(jù)正弦的定義可以表示出CE的長(zhǎng)度,然后利用三角形的面積公式列式即可得解;
(2)根據(jù)S△ABC=S△ABD+S△ACD列式,然后根據(jù)正弦與余弦的定義分別把BD、AD、CD,AB,AC轉(zhuǎn)化為三角形函數(shù),代入整理即可得解.【解析】【解答】解:(1)過(guò)點(diǎn)C作CE⊥AB于點(diǎn)E;
則CE=AC?sin(α+β)=bsin(α+β);
∴S=AB?CE=c?bsin(α+β)=bcsin(α+β);
即S=bcsin(α+β);
(2)根據(jù)題意,S△ABC=S△ABD+S△ACD;
∵AD⊥BC;
∴AB?ACsin(α+β)=BD?AD+CD?AD;
∴sin(α+β)=;
=+;
=sinαcosβ+cosαsinβ.20、略
【分析】【分析】(1)求出∠BAD=∠CAD,根據(jù)角平分線性質(zhì)推出=;代入求出即可;
(2)作BF⊥AC于F;求出AB=BC,根據(jù)等腰三角形性質(zhì)求出AF=CF,根據(jù)三角函數(shù)的定義求出即可;
(3)BF過(guò)圓心O,作OM⊥BC于M,求出BF,根據(jù)銳角三角函數(shù)的定義求出即可.【解析】【解答】解:(1)∵弧BD=弧DC;
∴∠BAD=∠CAD;
∴;
∴.
答:EC:CB的值是.
(2)作BF⊥AC于F;
∵=,=;
∴BA=BC;
∴F為AC中點(diǎn);
∴cosC==.
答:cosC的值是.
(3)BF過(guò)圓心O;作OM⊥BC于M;
由勾股定理得:BF==CF;
∴tan.
答:tan的值是.21、略
【分析】【分析】延長(zhǎng)AM,過(guò)點(diǎn)B作CD的平行線與AM的延長(zhǎng)線交于點(diǎn)F,再連接CF.根據(jù)平行線分線段成比例的性質(zhì)和逆定理可得CF∥BE,根據(jù)平行四邊形的判定和性質(zhì)即可得證.【解析】【解答】證明:延長(zhǎng)AM;過(guò)點(diǎn)B作CD的平行線與AM的延長(zhǎng)線交于點(diǎn)F,再連接CF.
又∵DE∥BC;
∴;
∴CF∥BE;
從而四邊形OBFC為平行四邊形;
所以BM=MC.四、作圖題(共4題,共36分)22、略
【分析】【分析】作點(diǎn)A關(guān)于河CD的對(duì)稱點(diǎn)A′,當(dāng)水廠位置O在線段AA′上時(shí),鋪設(shè)管道的費(fèi)用最?。窘馕觥俊窘獯稹拷猓鹤鼽c(diǎn)A關(guān)于河CD的對(duì)稱點(diǎn)A′;連接A′B,交CD與點(diǎn)O,則點(diǎn)O即為水廠位置,此時(shí)鋪設(shè)的管道長(zhǎng)度為OA+OB.
∵點(diǎn)A與點(diǎn)A′關(guān)于CD對(duì)稱;
∴OA′=OA;A′C=AC=1;
∴OA+OB=OA′+OB=A′B.
過(guò)點(diǎn)A′作A′E⊥BE于E;則∠A′EB=90°,A′E=CD=3,BE=BD+DE=3+1=4;
∴在Rt△A′BE中,A′B==5(千米);
∴2000
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 全新技師合同協(xié)議書(shū)下載
- 國(guó)際貿(mào)易實(shí)務(wù)3-合同條款
- 聘請(qǐng)飛行員勞動(dòng)合同
- 聯(lián)合國(guó)國(guó)際貨物銷(xiāo)售合同公約
- 招標(biāo)投標(biāo)買(mǎi)賣(mài)合同范本
- 有關(guān)加工合同模板
- 食材供應(yīng)合同范本
- 茶葉買(mǎi)賣(mài)合同
- 會(huì)議室場(chǎng)地租賃合同范本
- 部門(mén)承包合同
- 鋼結(jié)構(gòu)工程施工(第五版) 課件 2項(xiàng)目四 高強(qiáng)度螺栓
- 大學(xué)生就業(yè)指導(dǎo)(高等院校學(xué)生學(xué)習(xí)就業(yè)指導(dǎo)課程)全套教學(xué)課件
- 《實(shí)驗(yàn)診斷學(xué)》課件
- 小學(xué)網(wǎng)管的工作總結(jié)
- 診所校驗(yàn)現(xiàn)場(chǎng)審核表
- 派出所上戶口委托書(shū)
- 醫(yī)院6s管理成果匯報(bào)護(hù)理課件
- SYT 0447-2014《 埋地鋼制管道環(huán)氧煤瀝青防腐層技術(shù)標(biāo)準(zhǔn)》
- 第19章 一次函數(shù) 單元整體教學(xué)設(shè)計(jì) 【 學(xué)情分析指導(dǎo) 】 人教版八年級(jí)數(shù)學(xué)下冊(cè)
- 電梯結(jié)構(gòu)與原理-第2版-全套課件
- IEC-62368-1-差異分享解讀
評(píng)論
0/150
提交評(píng)論