




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Received:29February2024
Accepted:2July2024
DOI:
10.1002/qub2.75
REVIEWARTICLE
QuantitativeBiology
openAccess
Stochasticthermodynamicsforbiologicalfunctions
YuanshengCao
1
|
ShilingLiang
2
1DepartmentofPhysics,TsinghuaUniversity,Beijing,China
2InstituteofPhysics,SchoolofBasicSciences,écolePolytechniqueFédéraledeLausanne
(EPFL),Lausanne,Switzerland
Correspondence
YuanshengCaoandShilingLiang.Email:
yscao@
and
shiling.liang@epfl.ch
Fundinginformation
NationalNaturalScienceFoundationofChina,Grant/AwardNumber:12374213;
SchweizerischerNationalfondszurF?rderungderWissenschaftlichenForschung,Grant/
AwardNumber:200020_178763
Abstract
Livingsystemsoperatewithinphysicalconstraintsimposedbynonequilib-riumthermodynamics.Thisreviewexploresrecentadvancementsinapplyingtheseprinciplestounderstandthefundamentallimitsofbiologicalfunctions.Weintroducetheframeworkofstochasticthermodynamicsanditsrecentdevelopments,followedbyitsapplicationtovariousbiologicalsystems.Weemphasizetheinterconnectednessofkineticsandenergeticswithinthisframework,focusingonhownetworktopology,kinetics,andenergeticsinfluencefunctionsinthermodynamicallyconsistentmodels.Wediscussexamplesintheareasofmolecularmachine,errorcorrection,biologicalsensing,andcollectivebehaviors.Thisreviewaimstobridgephysicsandbiologybyfosteringaquantitativeunderstandingofbiologicalfunctions.
KEYWORDS
biologicalfunctions,physicalconstraints,stochasticthermodynamics
1|INTRODUCTION
Physicsandbiology,whilesharingacommongoalofunderstandingthenaturalworld,employdistinctpara-digmsandterminologiestoachievethisobjective.Physicsstrivestoidentifyfundamental,universallawsgoverningthebehaviorofmatterandenergy,oftenexpressedusingconceptssuchasenergy,entropy,forces,andrates.Incontrast,biologydelvesintotheintricatecomplexitiesoflife,focusingonthestructures,functions,andinformationflowwithinlivingsystems,oftenutilizingtermssuchassignals,codes,transcrip-tion,andtranslation.
Modernbiologicalphysics,orthephysicsoflivingsystems,bridgesthedisciplinarygapbyapplyingtheprinciplesandmethodologiesofphysicstoelucidatebiologicalphenomena.Acentralfocusofthisinterdis-ciplinaryfieldistheinvestigationofbiologicalfunctions.Fromthemolecularmachinerywithinacelltothebiomechanicsoforganismalmovement,biological
physicsseekstounraveltheunderlyingphysicalprin-ciplesgoverningtheseprocesses.
Thefunctionalityoflivingsystemsisconstrainedbythefundamentallawsofphysics,chemistry,andbiology.Withinsignalingnetworks,forexample,re-ceptorspecificityensuresthattheyonlyrespondtospecificligands.Thisbiochemicalspecificityarisesfromthemolecularstructuresshapedbyevolution.However,aswillbedetailedlater,thefundamentallimitationsgoverningmanybiologicalfunctionsstemnotonlyfrombiologicalandchemicalfactorsbutalsofromthebasicphysicalprinciplesgoverningcellularprocessesandtheirenvironment.
Amongtherelevantsubfieldsofphysics,thermo-dynamicsprovidessomeofthemostuniversalcon-straintsonbiologicalsystems.Forinstance,theconservationofenergy(thefirstlawofthermody-namics)andmateriallimitstheyieldofcellularmeta-bolism[
1,2
].Thesecondlawofthermodynamics,whichstatesthatisolatedsystemstendtoward
Thisisanopenaccessarticleunderthetermsofthe
CreativeCommonsAttribution
License,whichpermitsuse,distributionandreproductioninanymedium,providedtheoriginalworkisproperlycited.
?2024TheAuthor(s).QuantitativeBiologypublishedbyJohnWiley&SonsAustralia,LtdonbehalfofHigherEducationPress.
QuantitativeBiology.2025;e75.
/10.1002/qub2.75
-
/journal/qb
1of19
20954697,
2of19
■
CAOandLIANG
maximumdisorder(andthereforeincompatiblewithlife),haslongchallengedphysicistsseekingtounder-standhowlivingsystemsmaintaintheirorderedstate.ErwinSchr?dinger,inhisinfluentialbookWhatisLife?,assertedthatlivingcellsmustabsorb“negativeen-tropy”or“freeenergy”asitistermedinstandardther-modynamics,tocounterbalancetheentropyproducedwithinbiologicalprocessesandmaintaintheirlow-entropy(highlyordered)states.Thermodynamically,akeydistinctionbetweenacellandaboxofgasisthatacellrepresentsanopensystem,continuouslyexchangingenergywithitssurroundingstoremaininastateofdynamicorder.
Traditionalequilibriumthermodynamicsoffersawell-suitedframeworkfordescribingaboxofgasmol-ecules.However,duetotheircontinuousexchangeoffreeenergywiththeenvironment,cellsareinherentlynonequilibriumsystems.Notably,acentralthemeofthisreviewisthatthecostoffreeenergyimposesfundamentallimitsontheperformanceofbiologicalfunctions.Furthermore,cellularsystemsoftenoperateatthemicroscopicormesoscopicscale,wherethenumberofparticipatingmolecules,typicallyrangingfrom10to105,fallswellbelowthethermodynamiclimitof1023particles.Thischaracteristicclassifiesatypicalcellasamicroscopicormesoscopicnonequilibriumsystem.Consequently,theperformanceofbiologicalfunctionsisalsoinherentlylimitedbytheinevitablefluctuationsarisingfromthesmallnumberofmoleculesinvolved.
Recentadvancesinstochasticthermodynamicsprovideapowerfultooltoaddressthetwofeatureslistedabove.Stochasticthermodynamicsinvestigatesthebehaviorofmesoscopicsystemsgovernedbythermalfluctuations,bothinandoutofequilibrium,establishingafundamentalrelationshipbetweenther-modynamicprinciplesandstochastickinetics.ThisfieldtracesitsrootstoEinstein’sseminalworkonBrownianmotion,inwhichheestablishedthefluctuation–dissipationtheorem(FDT),revealingaprofoundconnectionbetweenfluctuationanddissipationatthermodynamicequilibrium.Forsystemsoutofequi-librium(suchasaBrownianparticlecoupledtomultiplethermalreservoirsorsubjectedtotime-dependentenvironmentalchanges),abroaderthermodynamicframeworkisnecessary,particularlyforunderstandinginherentlynonequilibriumbiologicalprocessesatthesubcellularlevel.Fromthelatterhalfofthe20thcen-tury,significanteffortsweremadetoconnecttheirre-versibledynamicsofstochasticprocesseswithentropyproduction[
3–5
],leadingtoacomprehensiveframe-workwithprecisedefinitionsofthermodynamicquanti-tieslikeworkandheatatthemesoscopiclevel[
6
].Buildinguponthisframework,researchershaveappliedadvancedmathematicalandphysicaltoolstoinvesti-gatefundamentalthermodynamicconstraints,resultinginkeyfindingssuchasthefluctuationtheoremwhich
2025,1,Downloadedfrom
/doi/10.1002/qub2.75byCochraneChina
,WileyOnlineLibraryon[24/01/2025].SeetheTermsandConditions(
/terms-and-conditions
)onWileyOnlineLibraryforrulesofuse;OAarticlesaregovernedbytheapplicableCreativeCommonsLicense
quantifiestheirreversibilityofmesoscopicsystems[
7–
9
],thethermodynamicuncertaintyrelation(TUR)whichidentifiesthethermodynamiccostofsuppressingcur-rentfluctuations[
10
],andnonequilibriumresponseboundsdemonstratinguniversalconstraintsonthesensitivityofnonequilibriumresponse[
11
].Thesead-vancesinstochasticthermodynamicsilluminatethethermodynamicprinciplesgoverningmesoscopicsto-chasticsystemsandsetphysicalconstraintsonmesoscopicbiologicalprocesses.
Thisreviewdelvesintorecentadvancementsinunderstandingthephysicallimitations,particularlyfromanonequilibriumthermodynamicsperspective,ontheperformanceofvariousbiologicalfunctions.Webeginbyintroducingthefundamentalframeworkandrecentdevelopmentsinstochasticthermodynamics.Subse-quently,weshowcaseadvancementsinapplyingtheseprinciplestodiversebiologicalsystems.Recognizingthedeepconnectionbetweenkineticsandenergeticsinstochasticthermodynamics(e.g.,localdetailedbalance[LDB]),thereviewspecificallyfocusesonstudiesthatelucidatehowkinetics,energetics,andnetworktopol-ogydeterminebiologicalfunctionwithinthermody-namicallyconsistentmodels.Threekeyquestionswillbeaddressedanddiscussed:(1)howtodefineaspe-cificbiologicalfunctionwithinthecontextofbiologicalnetworksandthermodynamics,(2)howstochasticthermodynamics,particularlyfreeenergydissipation(orentropyproduction),imposesconstraintsonbiologicalfunctionality,and(3)howtoapproachtheselimitationsandoptimizeperformance.Thesekeyaspectswillbeexaminedwithspecificexamplesinvariousareas,includingtheprecisionofmolecularmachines,errorcorrectionmechanisms,biologicalsensing,andtheemergenceofcollectivebehaviors.Thisreviewaimstobridgethegapbetweenphysicsandbiology,fosteringaquantitativeunderstandingofbiologicalfunctions.
2|INTRODUCTIONTOSTOCHASTICTHERMODYNAMICS
2.1|Thermodynamicsofstochasticprocesses
Manybiologicalprocesses,suchasmolecularmotormotion,transcription,andproteinfolding,canbemodeledasMarkoviandynamicswherethermalnoisetriggerstransitionsbetweenmesoscopicstates[
12–
15
].Stochasticthermodynamicsoffersacomprehen-siveframeworkfordescribingthethermodynamicsofstochasticprocessesbyestablishingconstraintsonki-netics.Consequently,itenablesprecisedefinitionsofthermodynamicquantities,suchasentropyproduction,atbothtrajectoryandensemblelevels[
16–18
].Thisframeworkfurtherallowsforthederivationofthermo-dynamicconstraintsonvariousphysicalobservables,
20954697,2025,1,Downloadedfrom
/doi/10.1002/qub2.75byCochraneChina
,WileyOnlineLibraryon[24/01/2025].SeetheTermsandConditions(
/terms-and-conditions
)onWileyOnlineLibraryforrulesofuse;OAarticlesaregovernedbytheapplicableCreativeCommonsLicense
■
3of19
STOCHASTICTHERMODYNAMICSFORBIOLOGICALFUNCTIONS
illustratinghowphysicallawslimitbiologicalfunctions.Here,wewillintroducethebasicframeworkofsto-chasticthermodynamicsandhighlightseveralrecentadvancesinthisfield.
2.1.1|Masterequation
Adiscrete‐statestochasticprocessisgovernedbyamasterequationthatdescribesthetimeevolutionoftheoccupationprobabilitiesofstates:
p(t)=Wp(t);(1)
wherep(t)=[p1(t),p2(t),…,pn(t)]representsthevectorofprobabilitydistributionacrossallstatesinthesystemattimet.Here,Wisthetransitionratematrix,withitselementWijindicatingthetransitionratefromstatejtostatei.Thetimeevolutionoftheprobabilityforstateicanbederivedfromtheequationasfollows:
dX
dtpi=j≠i(Wijpj?Wjipi);(2)
whereJij=Wijpjrepresentstheprobabilitycurrentfromstatejtostatei,contributedbyalltransitioneventsalongtheedgeeijfromjtoi.ThenetcurrentfromstatejtostateiisJij=Jij?Jji.Inthelongtimelimit,thesystemreachesastationarystate,denotedbypst,inwhichall
netcurrentsarebalanced,suchthatΣj≠iJt=0forany
iorinmatrixproductformWpst=0.Ifallnetcurrents
arezero,thatis,Jt=0forallpairsi,j,thesteadystate
isanequilibriumstate.
Thesteady‐stateprobabilitydistributioncanbederivedusingagraph‐theoreticapproach,expressedasfollows:
(3)
p=;
whereTiisadirectedspanningtreerootedatstatei,andw(Ti)istheweightofthedirectedtreeTi,calcu-latedastheproductofthetransitionratesalongtheedgesofthetree.Figure
1
illustratesthespanningtreerepresentationofthesteady‐stateprobabilitydistribu-tionfora3‐statesystem.
Thisgraph‐theoreticsolutionhasbeendiscoveredseveraltimesthroughouthistory[
19–21
].Itcircumventsthedirectcomputationofmatrixinversionsandfacili-tatestheoreticalanalysisbasedonthegraph‐theoreticpropertiesofthenetwork.Thisanalysisservesasafoundationalelementforexploringthethermodynamicsofstochasticprocesses.Suchexplorationshaveledtonumerousresults,includingcycle‐decompositionofentropyproduction[
20
],boundsonnonequilibrium
responses[
11,22
],constraintsonsymmetrybreakinginbiochemicalsystem[
23
],andthedevelopmentofthespanning‐treerepresentationforfirstpassagetimesstatisticsinMarkovchains[
21,24
].
2.1.2|Localdetailedbalance
Forsmallsystems,theprincipleofmicroscopicreversibilitymandatesthatforanytransition,anasso-ciatedbackwardtransitionmustexist.Inasystemgovernedbythemasterequation,thermodynamicsisintroducedoneverypairoftransitionratesthroughtheLDBcondition
[18,25
],
=eΔSnv/kB;(4)
wherekBistheBoltzmannconstantandΔSnvrepre-
sentstheentropyproductionintotheenvironmentforthetransitionj→i.Theentropyproductionintotheenvironmentisdeterminedbytheenergyexchangebetweenthesystemanditsenvironment,incorporatingtwocontributions:theenergydifferencebetweenthetwostates,∈j?∈i,andthedrivingforceFij,
ΔSnv=(∈j?∈i)/T+Fij;(5)
whereTisthetemperatureoftheenvironment.Theentropyproductionquantifiestheirreversibilityofatransition—iftheentropyproductionispositive(i.e.thetransitionfromstatejtostateiincreasestheentropyoftheenvironment),thenWij>Wji,indicatingapreferencefortheforwardtransitionoverthebackwardone.Thelocalthermodynamicdefinitionoftransitionratesallowsustoassesswhetherasystemisinoroutofequilibriumonagloballevel.Onecancalculatethenonequilibriumdrivingforcealongacyclec=[m0,m1,m2,…,mn,m0]inthenetwork,
,、
Fc=ln;(6)
referredtoascycleaffinity,orcyclicdrivingforce.WhenFc≠0,thetime‐reversalsymmetryisbroken,indicatingthesystemisoutofequilibrium—astraversingacycleresultsinnonzeroentropyproduction.Conversely,ifFc=0forallcyclesinthenetwork,knownasKolmo-gorov’scriterion[
26
],thesystemisanequilibriumsystemandpreservestime‐reversalsymmetry.Theequilibriumnatureofasystemallowstheconstructionofanenergylandscapeinwhichtheentropyproductionofatransitionissolelydeterminedbytheenergydif-ferencebetweentheinitialandfinalstates,thatis,
ΔSnv=(∈j?∈i)/T.Consequently,theLDBcondition
reducestothedetailedbalancecondition
20954697,2025,1,Downloadedfrom
/doi/10.1002/qub2.75byCochraneChina
,WileyOnlineLibraryon[24/01/2025].SeetheTermsandConditions(
/terms-and-conditions
)onWileyOnlineLibraryforrulesofuse;OAarticlesaregovernedbytheapplicableCreativeCommonsLicense
4of19
■
CAOandLIANG
FIGURE1Graph‐theoreticsolutionforMarkovchain.(A)Athree‐stateMarkovchain.(B)Thegraph‐theoreticsolutionofstationarystate
probability.
==e?β(∈i?∈j);(7)
foranypairofstates,whereβ=1/(kBT)istheinversetemperature.DetailedbalanceensuresthesystemcanrelaxtoanequilibriumBoltzmanndistribution,
pieq=;(8)
wherethesummationinthedenominatorisoverallstates.Withdetailedbalance,thegraph‐theoreticalsolution,Equation(
3
),canbereducedtotheBoltz-manndistribution.
2.1.3|Entropyproductionrate
TheLDBconditionlinksthekineticsofaMarkovpro-cesswithitsthermodynamicproperties.Beyondtheentropyproductionofindividualtransitions,itispossibletodefinetheentropyproductionrate(EPR)attheensemblelevel,whichquantifiestheaveragerateofentropyproductionacrosstheentiresystem.DenotingtheEPRasΣ.,itcanbeexpressedasfollows:
Σ.tot=kB←JijlnJij
i;j>iJji
=kB←JijlnWij+kB←Jijlnpj.(9)
i;j>iWjiij>ipi
、 、尺----------√、-----;----、尺---------√
environmentEPR;Σ.envsystemEPR;Σ.sys
ThetotalEPR,Σ.tot,canbedecomposedintotheenvironmentEPR,Σ.env,andthesystemEPR,Σ.sys.Notably,thesystemEPRequalsthetimederivativeofthesystem’sShannonentropy,Σ.sys=?kBΣipilnpi).
Atanonequilibriumstationarystate,theprobabilitydistributionremainsunchangedovertime,resultinginzerosystemEPR.ThesignofJij=Jij?Jjialwaysalignswiththatofln(Jij/Jji),ensuringthenon‐negativetotalEPR.Thispropertyisconsistentwiththesecondlawofthermodynamics,whichstatesthatthetotalentropyofanisolatedsystem(herethesystemandenvironmenttogetherconstituteanisolatedsystem)isanon‐decreasingfunction.
2.2|Stochastictrajectoriesand
fluctuationtheorems
Themasterequationprovidesadeterministicdescrip-tionofthetimeevolutionofprobabilitydistributionsinaMarkovchain,obtainedbyaveragingoverthemanypossiblestochastictrajectorieswhicharegeneratedbythetransitionratematrixW.Ontheotherhand,theMarkovchainitselfmodelstherandomtransitionsbe-tweenstates,capturingtheinherentfluctuationsatthelevelofindividualtrajectories.AsdepictedinFigure
2B
,astochastictrajectory(andthetime‐reversedtrajectoryinFigure
2C
)withinathree‐statenetworkprovidesavisualrepresentationoftheseconcepts.Understandingthethermodynamicpropertiesofstochastictrajectoriesandextractinginformationfromthemarecentralproblemsinstochasticthermodynamics.Toaddressthesechallenges,wefirstintroducetheprobabilityofastochastictrajectoryforageneraldiscrete‐statesto-chasticprocess.Inthemostgeneralcase,asystemcanbesubjectedtoexternalcontrol,λt,leadingtoatime‐dependenttransitionmatrix,Wλ(t).Astochastictrajectoryisasequenceofstates[γ0,γ1,…,γn]alongwiththecorrespondingtimesoftransitionevents[t0,t1,t2,…,tn,tn+1],wheret0=0andtn+1=τdenotetheinitialandfinaltimesofthetrajectory,respectively,andeachtirepresentsthetimeforthetransitionγi?1→γi.Theprobabilityofatrajectorycanbewrittenasfollows:
20954697,2025,1,Downloadedfrom
/doi/10.1002/qub2.75byCochraneChina
,WileyOnlineLibraryon[24/01/2025].SeetheTermsandConditions(
/terms-and-conditions
)onWileyOnlineLibraryforrulesofuse;OAarticlesaregovernedbytheapplicableCreativeCommonsLicense
■
5of19
STOCHASTICTHERMODYNAMICSFORBIOLOGICALFUNCTIONS
FIGURE2StochastictrajectoriesforaMarkovchain.(A)Athree‐stateMarkovchain.(B)Astochastictrajectoryonthethree‐state
network.Theprobabilityofatrajectorycontainsthecontributionfromtransitioneventsandthesurvivalprobabilityamongthestatesalongthetrajectory.(C)Thetime‐reversedtrajectory.
Wiγi(t)dt
n
Pγ=p(γ0;0)∏i=1
(10)
;
i=0
Wiγi?1(ti)e∫+1
wherep(γ0,0)istheprobabilityatstateγ0withthe
initialdistribution,Wiγi?1(ti)istheprobabilityoftransition
Wγiγi(λ(t))dt
isthesurvival
γi?1→γiattimeti,ande∫+1
probabilityonstateγibetweentheinandouttransitions.Denotingtheprobabilityofthereversedtra-jectoryγundertime‐reversedprotocolλ(t)=λ(tn+1?t)asPγ,onecanfindthattheratioofthesetwoprobabilitiesisdeterminedbythetotalentropyproductionalongthetrajectory[
27
].
Pγ;
Pγ=eΔSot/kB(11)
where,
ΔSot=kBln+kBln.(12)
Equation(
11
)quantifiestheirreversibilityontrajec-torylevel,andcanalsobeunderstoodasadirectconsequenceofLDBcondition[
25
].Byintegratingoveralltrajectorieswithequalentropyproduction,wecanfindthedetailedfluctuationtheorem[
28
].
,、
PΔStotΔStot
P?ΔStot
,、=ekB;(13)
whichstatesthattheprobabilityofobservationofen-tropyproductionofanamountΔStotiseΔStot/kbmorelikelythanobservingthesameamountofnegativeentropyproductionunderatime‐reversalcontrolpro-tocol.Thisisoneofthemostfundamentalrelationsin
stochasticthermodynamics.Byaveraginge?ΔSot/kB
overallpossibletrajectories,onecanobtaintheinte-gratedfluctuationtheorem,
e?kB=Pγe?kBdγ=Pγdγ=1.(14)
,ΔSot、ZΔSotZ
γγγ
Thefluctuationtheoremhasbeenfoundseveraltimesattheendofthelastcentury
[7,8,28
].ItsapplicabilityextendsbeyondMarkovianprocesses,encompassingdeterministicHamiltoniansystems[
29
]andquantumsystems[
30
].Forexample,Jarzynskiequalityasoneoftheveryfirstintegratedfluctuationtheorems[
8
]revealsarelationbetweenworkandfreeenergychangeinanonequilibriumprocessinwhichasystemisdrivenfromaninitialequilibriumdistributionpinittoafinalequilibriumdistributionpfin.Theworkdonetothesystemfordifferentrealizationsvariesduetofluctuations,thusanexactrelationbetweenworkandfreeenergychangecannotbeestablished.However,anequalityexistsfortheaveragevaluebasedonthefluctuationtheorem.Forsuchaprocess,thetotalen-tropyproductionisΔStot=(W?ΔF)/T,whereWistheworkdoneonthesystemandΔF=Ffin?Finitisthefreeenergychangeofthesystem.Therefore,thedetailedfluctuationtheorem,Equation(
13
),leadstoCrooksrelationforwork[
28
].
=eβ(W?ΔF);(15)
whereP(W)istheprobabilityofapplyinganamountofworkWduringaforwardprocess,andP(?W)istheprobabilityofapplyinganamountofwork?Wduringatime‐reversedprocess.Similarly,theintegratedfluctua-tiontheorem,Equation(
14
),leadstotheJarzynskiequality[
8
],
20954697,
6of19
■
CAOandLIANG
he?βW〉=e?βΔF.(16)
ByapplyingtheJensen’sinequality,e?βhW〉≤he?βW〉,thesecondlawofthermodynamicsisrecoveredasfollows:
ΔF≤hW〉;(17)
whichmeansthattheaverageworkdoneonthesys-tem,takenoverallrealizationsofstochastictrajec-tories,providesanupperboundforthechangeinfreeenergy.Theequalsignistakeninthequasi‐staticlimit.Thisinequalitycanbeseenasastatistical‐levelmani-festationofthesecondlawofthermodynamics.
Onthebasisofthefluctuationtheoremandincor-poratingtheconceptofinformationbyfeedbackcontrol,SagawaandUedaintroducedageneralizedversionofJarzynskiequality[
31
],
he?β(W?ΔF)?I〉γ=1;(18)
whereIisthemutualinformationintroducedbyfeed-backcontrol.
2.3|Thermodynamicuncertaintyrelation
Atthemesoscopicscale,physicalobservablesareal-wayssubjecttofluctuationduetothermalnoise.Therelationbetweenfluctuationsanddissipationisacorefocusofstochasticthermodynamics,andthecostofsuppressingfluctuationisthecentralproblemofthestudyofthethermodynamicsofbiochemicalsystems.In2015,BaratoandSeifertproposedauniversalthermo-dynamicboundonthefluctuationofstochasticcurrents[
10
].Intheirwork,theystudiedabiasedrandomwalk(arandomwalkwheretheprobabilitiesofmovingindifferentdirectionsarenotequal)inonedimensiontointroducetheuncertaintyrelationofcurrents.Insuchasystem,theforwardandbackwardtransitionratesarek+andk?,respectively,whichgeneratestochastictrajec-toriesasshowninFigure
3
.Startingfromtheorigin,themeanandvarianceofthepositionoftherandomwalkerattimeτareVar[Xτ]=2Dτ=(k++k?)τandhXτ〉=vτ=(k+?k?)τ,respectively.Thebiasednatureofrandomwalkisassociatedwithacostofentropypro-ductionaccordingtotheLDBconditionEquation(
4
),asΔS=kBln(k+/k?)perstep.ThetotalentropyproductionaftertimeτisΣτ=hXτ〉ΔS.Combiningtheseexpressionsonecanfindarelationbetweendissipationandprecisionasfollows:
=≥.(19)
Itcanalsobeformulatedintermsofvelocity,diffu-sioncoefficient,andEPRasfollows:
2025,1,Downloadedfrom
/doi/10.1002/qub2.75byCochraneChina
,WileyOnlineLibraryon[24/01/2025].SeetheTermsandConditions(
/terms-and-conditions
)onWileyOnlineLibraryforrulesofuse;OAarticlesaregovernedbytheapplicableCreativeCommonsLicense
FIGURE3Stochastictrajectoriesofabiasedrandomwalk.
≥;(20)
whereΣ.=vΔSistheEPR.
AlthoughTURwasoriginallyobtainedfromspecificmodels,itwasconjecturedtoholdformoregeneralstochasticcurrentsinstochasticprocess,andhadlaterbeenprovenusingthelargedeviationtheoryinMarkovjumpprocesses[
32
],martingaletheoryincontinuousstochasticprocess[
33
],Cramér–Raoboundformulti‐dimensionalcurrents[
34,35
]andmanyotherap-proaches[
36–38
].Thegeneralformreadsasfollows:
≥;(21)
whichsetsatrade‐offrelationbetweentheuncertaintyofcurrentsandentropyproduction.Thismeansthatachievinghigherprecisioninacurrentgenerallyre-quiresagreaterdissipation.However,itisworthnotingthatTURcanbebrokeninunderdampedsystems,asillustratedwithanexampleofanunderdampedclock
[39
].Thus,thevalidityofTURisestablishedwithintheoverdampedregime,contingentuponanumberofadditionalassumptions[
40
].TheextensionofTURbeyondtheoverdampedlimitneedstoincorporateadditionaltre
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年自治區(qū)科技廳直屬事業(yè)單位引進(jìn)考試真題
- 修繕采購協(xié)議合同范本
- 兼職輔導(dǎo)老師合同范例
- 新能源汽車動(dòng)力蓄電池系統(tǒng)構(gòu)造與檢修 項(xiàng)目三-課后習(xí)題帶答案
- 勞務(wù)分包用工合同范本
- 公司銷售渠道合同范本
- 農(nóng)民玉米出售合同范本
- 2024年杭州銀行招聘考試真題
- 2024年江西省人才服務(wù)有限公司招聘筆試真題
- 企業(yè)雇傭貨車合同范本
- DB11T 852-2019 有限空間作業(yè)安全技術(shù)規(guī)范
- 最新2022年減肥食品市場(chǎng)現(xiàn)狀與發(fā)展趨勢(shì)預(yù)測(cè)
- 材料化學(xué)合成與制備技術(shù)
- DB23∕T 343-2003 國(guó)有林區(qū)更新造林技術(shù)規(guī)程
- 發(fā)展?jié)h語初級(jí)綜合1:第30課PPT課件[通用]
- 馬工程西方經(jīng)濟(jì)學(xué)(第二版)教學(xué)課件-(4)
- 醫(yī)療廢物管理組織機(jī)構(gòu)架構(gòu)圖
- cjj/t135-2009《透水水泥混凝土路面技術(shù)規(guī)程》
- 社保人事專員績(jī)效考核表
- 杭州育才小升初數(shù)學(xué)試卷(共4頁)
- 旋挖樁主要施工方法及技術(shù)措施(全護(hù)筒)
評(píng)論
0/150
提交評(píng)論