2024-2025學(xué)年新教材高中物理第4章力與平衡素養(yǎng)培優(yōu)課二平衡條件的應(yīng)用學(xué)案魯科版必修第一冊_第1頁
2024-2025學(xué)年新教材高中物理第4章力與平衡素養(yǎng)培優(yōu)課二平衡條件的應(yīng)用學(xué)案魯科版必修第一冊_第2頁
2024-2025學(xué)年新教材高中物理第4章力與平衡素養(yǎng)培優(yōu)課二平衡條件的應(yīng)用學(xué)案魯科版必修第一冊_第3頁
2024-2025學(xué)年新教材高中物理第4章力與平衡素養(yǎng)培優(yōu)課二平衡條件的應(yīng)用學(xué)案魯科版必修第一冊_第4頁
2024-2025學(xué)年新教材高中物理第4章力與平衡素養(yǎng)培優(yōu)課二平衡條件的應(yīng)用學(xué)案魯科版必修第一冊_第5頁
已閱讀5頁,還剩4頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

PAGE8-素養(yǎng)培優(yōu)課(二)平衡條件的應(yīng)用學(xué)習(xí)目標(biāo):1.駕馭解決靜態(tài)平衡問題的幾類常用方法.2.學(xué)會用解析法和圖解法分析解決動態(tài)平衡問題.3.駕馭解決臨界問題和極值問題的方法.靜態(tài)平衡1.靜態(tài)平衡的定義靜態(tài)平衡是指物體在共點(diǎn)力的作用下保持靜止?fàn)顟B(tài)時的平衡.2.靜態(tài)平衡的理解(1)運(yùn)動學(xué)特征:處于靜態(tài)平衡的物體速度為零.(2)平衡條件:處于靜態(tài)平衡的物體所受的合力為零.(3)實(shí)例:日常生活中,三角形支架以其優(yōu)越的平衡穩(wěn)定性被廣泛采納.如:大型展覽館、體育館屋頂?shù)匿摷芙Y(jié)構(gòu),公路邊的路燈支架,建筑工地的塔吊支架等靜態(tài)平衡裝置大多采納三角形結(jié)構(gòu).【例1】沿光滑的墻壁用網(wǎng)兜把一個足球掛在A點(diǎn),如圖所示,足球的質(zhì)量為m,網(wǎng)兜的質(zhì)量不計(jì),足球與墻壁的接觸點(diǎn)為B,懸繩與墻壁的夾角為α,求懸繩對球的拉力和墻壁對球的支持力.思路點(diǎn)撥:①球處于靜止?fàn)顟B(tài),所受合外力為零.②選取球?yàn)樘接憣ο罂刹杉{合成法、分解法、正交分解法求解.[解析]方法一:用合成法取足球和網(wǎng)兜作為探討對象,它們受重力G=mg、墻壁的支持力N和懸繩的拉力T三個共點(diǎn)力作用而平衡.由共點(diǎn)力平衡的條件可知,N和T的合力F與G大小相等、方向相反,即F=G,作平行四邊形如圖所示.由三角形學(xué)問得:N=Ftanα=mgtanα,T=eq\f(F,cosα)=eq\f(mg,cosα).方法二:用分解法取足球和網(wǎng)兜作為探討對象,其受重力G=mg、墻壁的支持力N、懸繩的拉力T,如圖所示,將重力分解為F′1和F′2.由共點(diǎn)力平衡條件可知,N與F′1的合力必為零,T與F′2的合力也必為零,所以N=F′1=mgtanα,T=F′2=eq\f(mg,cosα).方法三:用正交分解法求解取足球和網(wǎng)兜作為探討對象,受三個力作用,重力G=mg、墻壁的支持力N、懸繩的拉力T,如圖所示,取水平方向?yàn)閤軸,豎直方向?yàn)閥軸,將T分別沿x軸和y軸方向進(jìn)行分解.由平衡條件可知,在x軸和y軸方向上的合力Fx合和Fy合應(yīng)分別等于零,即Fx合=N-Tsinα=0 ①Fy合=Tcosα-G=0 ②由②式解得:T=eq\f(G,cosα)=eq\f(mg,cosα)代入①式得:N=Tsinα=mgtanα.[答案]eq\f(mg,cosα)mgtanα解決靜態(tài)平衡問題的方法及步驟(1)處理平衡問題,常用的方法有合成法、分解法、相像三角形法、正交分解法等.(2)應(yīng)用平衡條件解題的步驟①明確探討對象(物體、質(zhì)點(diǎn)或繩的結(jié)點(diǎn)等);②對探討對象進(jìn)行受力分析;③建立合適的坐標(biāo)系,應(yīng)用共點(diǎn)力的平衡條件,選擇恰當(dāng)?shù)姆椒谐銎胶夥匠蹋虎芮蠼夥匠?,并探討結(jié)果.[跟進(jìn)訓(xùn)練]1.如圖所示,質(zhì)量為m的物塊在水平推力作用下,靜止在傾角為θ的光滑斜面上,則物塊對斜面的壓力為()A.mgcosθB.mgsinθC.eq\f(mg,cosθ)D.eq\f(mg,sinθ)C[分析物塊受力,建立如圖所示的直角坐標(biāo)系.物塊靜止,則y軸方向上有Ny=Ncosθ=mg,則N=eq\f(mg,cosθ).故C正確.]動態(tài)平衡1.動態(tài)平衡的定義動態(tài)平衡是指物體在共點(diǎn)力的作用下保持勻速直線運(yùn)動狀態(tài),或者通過限制某些物理量,使物體的運(yùn)動狀態(tài)緩慢地發(fā)生變更,而這個過程中物體又始終處于一系列的平衡狀態(tài).2.平衡條件物體所受共點(diǎn)力的合力為零.3.解題思路把“動”化為“靜”,從“靜”中求“動”.【例2】如圖所示,把球夾在豎直墻AC和木板BC之間,不計(jì)摩擦,球?qū)Φ膲毫镹1,球?qū)δ景宓膲毫镹2.在將木板BC漸漸放至水平的過程中,下列說法正確的是()A.N1和N2都增大B.N1和N2都減小C.N1增大,N2減小D.N1減小,N2增大思路點(diǎn)撥:eq\x(\a\al(選取球?yàn)?探討對象))?eq\x(\a\al(對球進(jìn)行受力分析,作,出受力的矢量三角形))?eq\x(\a\al(依據(jù)有向線段的長度,變更推斷力的變更))B[球受到重力G、墻AC對球的彈力N1′和板BC對球的支持力N2′,如圖甲所示.甲乙在將板BC漸漸放至水平的過程中,球始終處于平衡狀態(tài),G、N1′、N2′經(jīng)過平衡可構(gòu)成一系列封閉的矢量三角形,如圖乙所示,由圖乙可以看出,N1′、N2′都漸漸減?。闪Φ南嗷プ饔每芍?,N1=N1′,N2=N2′,所以N1、N2都漸漸減?。蔬x項(xiàng)B正確.]動態(tài)平衡及其分析方法(1)物體的動態(tài)平衡是指物體在運(yùn)動中的平衡,通過限制某一物理量,使物體的狀態(tài)發(fā)生緩慢變更,在此過程中,物體始終處于一系列的動態(tài)平衡狀態(tài).(2)動態(tài)平衡問題的兩種分析方法①解析法:對探討對象的任一狀態(tài)進(jìn)行受力分析,建立平衡方程,求出因變量與自變量的一般函數(shù)式,然后依據(jù)自變量的變更確定因變量的變更.②圖解法:對探討對象進(jìn)行受力分析,再依據(jù)平行四邊形定則或三角形定則畫出不同狀態(tài)下的力的矢量圖(畫在同一個圖中),然后依據(jù)有向線段(表示力)的長度變更推斷各個力的變更狀況.[跟進(jìn)訓(xùn)練]2.如圖所示,質(zhì)量為M的物體用OA和OB兩根等長的繩子懸掛在半弧形的支架上,B點(diǎn)固定不動,A點(diǎn)則由頂點(diǎn)C沿圓弧向D移動.在此過程中,繩子OA的張力將()A.由大變小B.由小變大C.先減小后增大D.先增大后減小C[O點(diǎn)受到向下的拉力F(等于重力Mg),依據(jù)它的作用效果,可將力F分解成兩個力:沿AO方向的力FA和沿BO方向的力FB.在A點(diǎn)移動過程中,繩OA與豎直方向之間的夾角由0增大到90°,合力F的大小、方向不變,分力FB的方向不變,由于分力FA的方向變更導(dǎo)致FA、FB的大小發(fā)生變更.可見,F(xiàn)A的大小先減小,當(dāng)FA⊥FB時(即繩OA與繩OB垂直時)減到最小值,為Mgsinα(α為繩OB與豎直方向的夾角),然后又漸漸增大到Mgtanα,如圖所示,繩OA中的張力與FA大小相等.故正確選項(xiàng)為C.]平衡問題中的臨界和極值問題1.臨界問題臨界狀態(tài)是指某種物理現(xiàn)象(或物理狀態(tài))變?yōu)榱硪环N物理現(xiàn)象(或物理狀態(tài))的過程中的轉(zhuǎn)折狀態(tài).可理解為“恰好出現(xiàn)”某種物理現(xiàn)象,也可理解為“恰好不出現(xiàn)”某種物理現(xiàn)象,涉及臨界狀態(tài)的問題稱為臨界問題.2.極值問題極值是指描述物體的物理量在變更過程中出現(xiàn)的最大值或最小值.涉及極值的問題稱為極值問題.3.解決臨界問題和極值問題的方法一種是物理分析法,通過對物理過程的分析,抓住臨界(或極值)條件進(jìn)行求解.例如,兩物體脫離的臨界條件是兩物體間的彈力為零.另一種是數(shù)學(xué)法,通過對問題的分析,依據(jù)物理規(guī)律寫出物理量之間的函數(shù)關(guān)系(或作出函數(shù)圖像),用數(shù)學(xué)學(xué)問(例如求二次函數(shù)的極值、探討公式極值、三角函數(shù)極值等)求解.【例3】如圖所示,小球的質(zhì)量為2kg,兩根輕繩AB和AC的一端連接于豎直墻上,另一端系于小球上,AC繩水平,AB繩與AC繩成θ=60°角,在小球上另施加一個方向與水平線也成θ角的拉力F,取g=10m/s2.若要使繩都能拉直,求拉力F的大小范圍.思路點(diǎn)撥:因?yàn)槔K都能拉直,所以各個夾角不變更.分兩種狀況,即第一種是FB=0時,其次種是FC=0時,分別解出即可.[解析]小球受重力mg、AB拉力FB、AC拉力FC和F作用處于平衡狀態(tài),如圖所示.由eq\b\lc\{\rc\(\a\vs4\al\co1(Fx合=0,Fy合=0)),有eq\b\lc\{\rc\(\a\vs4\al\co1(Fcos60°=FC+FBcos60°,FBsin60°+Fsin60°=mg))要兩繩伸直則應(yīng)滿意FB≥0,F(xiàn)C≥0FB≥0時,F(xiàn)≤eq\f(mg,sin60°)=eq\f(40\r(3),3)NFC≥0時,F(xiàn)≥eq\f(mg,2sin60°)=eq\f(20\r(3),3)N綜上所述,F(xiàn)的大小范圍為eq\f(20\r(3),3)N≤F≤eq\f(40\r(3),3)N.[答案]eq\f(20\r(3),3)N≤F≤eq\f(40\r(3),3)N探討平衡物體的臨界、極值問題的常用方法假設(shè)推理法先假設(shè)某種狀況成立,然后依據(jù)平衡條件及對臨界條件的分析論證.物理分析法通過對物理過程的分析,抓住臨界(或極值)條件進(jìn)行求解.解析法依據(jù)物體的平衡條件列方程,寫出物理量之間的函數(shù)關(guān)系,在解方程時采納數(shù)學(xué)學(xué)問求極值,通常用到的數(shù)學(xué)學(xué)問有二次函數(shù)、均值不等式以及三角函數(shù)等.但肯定要依據(jù)物理理論對解的合理性及物理意義進(jìn)行探討或說明.圖解法依據(jù)物體的平衡條件作出力的矢量圖,如物體只受三個力,則這三個力構(gòu)成封閉矢量三角形,然后依據(jù)力的矢量圖進(jìn)行動態(tài)分析,尤其留意分析大小和方向變更的力,確定其最大值和最小值.此法簡便、直觀.[跟進(jìn)訓(xùn)練]3.如圖所示,重50N的物體A放在傾角為37°的粗糙斜面上,有一根原長為10cm,勁度系數(shù)為800N/m的彈簧,其一端固定在斜面頂端,另一端連接物體A后,彈簧長度為14cm.現(xiàn)用一測力計(jì)沿斜面對下拉物體A,若物體A與斜面間的最大靜摩擦力為20N,當(dāng)彈簧的長度仍為14cm時,測力計(jì)的讀數(shù)不行能為()A.10NB.20NC.30ND.0C[物體A在斜面上處于靜止?fàn)顟B(tài)時合外力為零,物體A在斜面上受五個力的作用,分別為重力、支持力、彈簧彈力、摩擦力、拉力F.當(dāng)摩擦力的方向沿斜面對上時,F(xiàn)+mgsin37°≤fmax+k(14cm-10cm),解得F≤22N.當(dāng)摩擦力沿斜面對下時,F(xiàn)最小值為零,即拉力的取值范圍為0≤F≤22N.故選項(xiàng)C正確.]1.一氫氣球下系一小重物G,重物只在重力和繩的拉力作用下做勻速直線運(yùn)動,不計(jì)空氣阻力和風(fēng)力影響,而重物運(yùn)動的方向如各圖中箭頭所示,則下列圖中氣球和重物G在運(yùn)動中所處的位置可能的是()ABCDA[重物G受到重力和繩的拉力的共同作用,由力的平衡可知,二力必定反向,所以懸線是豎直的.]2.如圖所示,一只質(zhì)量為m的螞蟻在半徑為R的半球形碗內(nèi)爬行,在距碗底高eq\f(R,2)的P點(diǎn)停下來,若重力加速度為g,則它在P點(diǎn)受到的摩擦力大小為()A.eq\f(1,2)mgB.eq\f(\r(2),2)mgC.eq\f(\r(3),2)mgD.mgC[過P點(diǎn)作半球形面的切面,該切面相當(dāng)于傾角為θ的斜面,由幾何學(xué)問知cosθ=eq\f(1,2).用一方形物體表示螞蟻,故螞蟻在P點(diǎn)受到的摩擦力大小Ff=F1=mgsinθ=eq\f(\r(3),2)mg,C正確.]3.如圖所示,用OA、OB兩根輕繩將花盆懸于兩豎直墻之間,起先時OB繩水平.現(xiàn)保持O點(diǎn)位置不變,變更OB繩長使繩右端由B點(diǎn)緩慢上移至B′點(diǎn),此時OB′與OA之間的夾角θ<90°.設(shè)此過程OA、OB繩的拉力分別為FOA、FOB,則下列說法正確的是()A.FOA始終減小 B.FOA始終增大C.FOB始終減小 D.FOB始終增大A[對結(jié)點(diǎn)O受力分析如圖所示,依據(jù)平衡條件知,兩根繩子的拉力的合力與重力大小相等、方向相反,作出輕繩OB在兩個位置時力的合成圖如圖,由圖看出,F(xiàn)OA漸漸減小,F(xiàn)OB先減小后增大,當(dāng)θ=90°時,F(xiàn)OB最?。甝4.如圖所示,質(zhì)量為M的直角三棱柱A放在水平地面上,三棱柱的斜面是光滑的,且斜面傾角為θ.質(zhì)量為m的光滑球放在三棱柱和光滑豎直墻壁之間,A和B都處于靜止?fàn)顟B(tài),求:(1)地面對三棱柱支持力的大??;(2)地面對三棱柱摩擦力的大小.[解析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論