重慶工程職業(yè)技術(shù)學(xué)院《人工神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第1頁
重慶工程職業(yè)技術(shù)學(xué)院《人工神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第2頁
重慶工程職業(yè)技術(shù)學(xué)院《人工神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)》2023-2024學(xué)年第一學(xué)期期末試卷_第3頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

站名:站名:年級專業(yè):姓名:學(xué)號:凡年級專業(yè)、姓名、學(xué)號錯寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁重慶工程職業(yè)技術(shù)學(xué)院《人工神經(jīng)網(wǎng)絡(luò)與深度學(xué)習(xí)》

2023-2024學(xué)年第一學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、人工智能在醫(yī)療領(lǐng)域有廣泛的應(yīng)用前景。假設(shè)要開發(fā)一個能夠輔助醫(yī)生診斷疾病的系統(tǒng),需要整合患者的病歷、檢查報告和影像資料等信息。以下關(guān)于數(shù)據(jù)隱私和安全的考慮,哪一項是最為重要的?()A.采用加密技術(shù)對患者數(shù)據(jù)進行加密存儲和傳輸,確保數(shù)據(jù)不被泄露B.允許醫(yī)療數(shù)據(jù)在未經(jīng)患者同意的情況下用于研究和開發(fā)新的診斷模型C.忽略數(shù)據(jù)隱私和安全問題,優(yōu)先考慮系統(tǒng)的診斷準(zhǔn)確性D.將患者數(shù)據(jù)存儲在公共云服務(wù)上,以降低存儲成本2、假設(shè)要開發(fā)一個能夠在虛擬環(huán)境中進行自主探索和學(xué)習(xí)的人工智能體,例如在游戲中不斷提升能力,以下哪種學(xué)習(xí)機制和策略可能是關(guān)鍵的?()A.無監(jiān)督學(xué)習(xí)B.有監(jiān)督學(xué)習(xí)C.強化學(xué)習(xí)D.以上都是3、人工智能在教育領(lǐng)域有潛在的應(yīng)用,例如個性化學(xué)習(xí)系統(tǒng)。假設(shè)要為學(xué)生提供個性化的學(xué)習(xí)路徑,以下哪種數(shù)據(jù)對于系統(tǒng)的設(shè)計最為關(guān)鍵?()A.學(xué)生的考試成績B.學(xué)生的學(xué)習(xí)時間C.學(xué)生的學(xué)習(xí)風(fēng)格和偏好D.學(xué)校的課程設(shè)置4、在人工智能的可解釋性方面,一直是一個研究熱點。假設(shè)開發(fā)了一個用于信用評估的人工智能模型,以下關(guān)于解釋模型決策的方法,哪一項是不太可行的?()A.使用特征重要性分析,確定哪些輸入特征對模型的決策影響最大B.對模型的內(nèi)部結(jié)構(gòu)和參數(shù)進行詳細(xì)解釋,讓用戶理解模型的工作原理C.通過生成示例來說明模型在不同情況下的決策邏輯D.拒絕提供任何解釋,認(rèn)為模型的準(zhǔn)確性比可解釋性更重要5、當(dāng)利用人工智能進行推薦系統(tǒng)的設(shè)計,例如為用戶推薦個性化的電影或音樂,以下哪種技術(shù)可能有助于提高推薦的準(zhǔn)確性和新穎性?()A.協(xié)同過濾B.基于內(nèi)容的推薦C.混合推薦D.以上都是6、在人工智能的知識表示方法中,語義網(wǎng)絡(luò)和框架表示是常見的方式。假設(shè)我們要構(gòu)建一個關(guān)于動物分類的知識系統(tǒng),以下關(guān)于這兩種表示方法的說法,哪一項是正確的?()A.語義網(wǎng)絡(luò)更適合表示結(jié)構(gòu)化的、層次分明的知識B.框架表示難以處理知識的不確定性和模糊性C.語義網(wǎng)絡(luò)難以表達(dá)復(fù)雜的對象及其關(guān)系D.框架表示在知識的擴展和更新方面較為困難7、在人工智能的自然語言生成任務(wù)中,假設(shè)要生成一篇連貫且有邏輯的文章,以下關(guān)于模型訓(xùn)練的策略,哪一項是不正確的?()A.使用預(yù)訓(xùn)練的語言模型,并在特定任務(wù)上進行微調(diào)B.從簡單的句子生成開始,逐漸過渡到復(fù)雜的文章生成C.不使用任何先驗知識或語言規(guī)則,完全依靠數(shù)據(jù)驅(qū)動的學(xué)習(xí)D.引入對抗訓(xùn)練,提高生成文本的質(zhì)量和多樣性8、在人工智能的自動駕駛領(lǐng)域,為了確保車輛在各種路況和天氣條件下的安全行駛,需要綜合考慮多個傳感器的數(shù)據(jù)進行決策。以下哪種傳感器的數(shù)據(jù)融合方法可能是關(guān)鍵的技術(shù)挑戰(zhàn)?()A.基于卡爾曼濾波B.基于深度學(xué)習(xí)C.基于貝葉斯估計D.以上都是9、人工智能在藝術(shù)創(chuàng)作領(lǐng)域也有所涉足,例如音樂生成和圖像創(chuàng)作。以下關(guān)于人工智能在藝術(shù)創(chuàng)作中的描述,不正確的是()A.可以根據(jù)給定的風(fēng)格和主題生成新的音樂作品和圖像B.人工智能創(chuàng)作的藝術(shù)作品具有獨特的創(chuàng)新性和表現(xiàn)力C.人工智能在藝術(shù)創(chuàng)作中完全取代了人類藝術(shù)家的創(chuàng)造力和情感表達(dá)D.引發(fā)了關(guān)于藝術(shù)本質(zhì)和創(chuàng)造力的思考和討論10、在人工智能的聚類分析中,例如將客戶按照消費行為進行分組,假設(shè)數(shù)據(jù)分布不規(guī)則且存在噪聲。以下哪種聚類算法在這種情況下可能表現(xiàn)較好?()A.K-Means聚類算法,基于距離進行分組B.層次聚類算法,構(gòu)建層次結(jié)構(gòu)C.密度聚類算法,基于密度進行分組D.隨機聚類算法,隨機分配數(shù)據(jù)到不同組11、在人工智能的文本分類任務(wù)中,類別不平衡是一個常見的問題。假設(shè)一個數(shù)據(jù)集包含大量屬于某一主要類別的樣本,而其他類別的樣本數(shù)量較少。以下哪種方法在處理類別不平衡問題時最為有效,能夠提高少數(shù)類別的分類性能?()A.重采樣技術(shù)B.代價敏感學(xué)習(xí)C.特征選擇D.以上方法綜合運用12、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用具有很大潛力。假設(shè)要利用人工智能技術(shù)實現(xiàn)農(nóng)作物的病蟲害監(jiān)測,以下關(guān)于這種應(yīng)用的描述,正確的是:()A.可以通過分析農(nóng)作物的圖像和傳感器數(shù)據(jù),及時發(fā)現(xiàn)病蟲害的跡象B.人工智能系統(tǒng)能夠完全替代農(nóng)民的經(jīng)驗和判斷,獨立完成病蟲害的防治工作C.由于農(nóng)作物生長環(huán)境的復(fù)雜性,人工智能在病蟲害監(jiān)測中的應(yīng)用效果有限D(zhuǎn).安裝在農(nóng)田中的監(jiān)測設(shè)備越多,人工智能病蟲害監(jiān)測系統(tǒng)的準(zhǔn)確性就越高13、人工智能在智能交通系統(tǒng)中的應(yīng)用可以改善交通流量和安全性。假設(shè)要開發(fā)一個能夠?qū)崟r優(yōu)化交通信號燈的系統(tǒng),以下關(guān)于考慮交通狀況多樣性的方法,哪一項是最關(guān)鍵的?()A.只考慮當(dāng)前道路的車流量,不考慮周邊道路的情況B.綜合考慮不同時間段、天氣條件和特殊事件等對交通的影響C.按照固定的模式設(shè)置交通信號燈,不進行實時調(diào)整D.忽略行人的需求,只關(guān)注車輛的通行14、在人工智能的倫理和社會影響方面,存在許多需要思考的問題。假設(shè)一個基于人工智能的招聘系統(tǒng)根據(jù)候選人的簡歷和面試表現(xiàn)進行篩選。以下關(guān)于這種系統(tǒng)可能帶來的潛在問題,哪一項是最值得關(guān)注的?()A.系統(tǒng)可能會因為數(shù)據(jù)偏差而對某些群體產(chǎn)生不公平的篩選結(jié)果B.系統(tǒng)的決策過程過于透明,導(dǎo)致企業(yè)招聘策略被競爭對手輕易了解C.系統(tǒng)可能會過于依賴簡歷信息,而忽略了候選人的實際能力和潛力D.系統(tǒng)的運行成本過高,對企業(yè)造成經(jīng)濟負(fù)擔(dān)15、人工智能中的計算機視覺技術(shù)能夠讓計算機理解和分析圖像和視頻內(nèi)容。假設(shè)要開發(fā)一個能夠?qū)崟r監(jiān)測交通流量和識別車輛類型的系統(tǒng),需要在不同的天氣和光照條件下準(zhǔn)確地檢測和分類車輛。以下哪種計算機視覺技術(shù)或方法在這種復(fù)雜場景下具有更好的魯棒性和準(zhǔn)確性?()A.傳統(tǒng)的圖像處理方法B.基于特征提取的方法C.深度學(xué)習(xí)中的目標(biāo)檢測算法D.光流法二、簡答題(本大題共4個小題,共20分)1、(本題5分)解釋人工智能在碳排放監(jiān)測和管理中的方法。2、(本題5分)簡述蟻群算法和粒子群優(yōu)化算法。3、(本題5分)說明目標(biāo)檢測的方法和挑戰(zhàn)。4、(本題5分)談?wù)勅斯ぶ悄茉谄髽I(yè)創(chuàng)新管理中的應(yīng)用。三、操作題(本大題共5個小題,共25分)1、(本題5分)借助強化學(xué)習(xí)算法,如Q-learning或DeepQ-Network,實現(xiàn)一個簡單的游戲環(huán)境(如迷宮游戲)的智能體,讓其通過學(xué)習(xí)找到最優(yōu)策略。2、(本題5分)利用Python的OpenCV庫,實現(xiàn)對圖像的霍夫變換。檢測圖像中的直線、圓等幾何形狀,展示變換結(jié)果。3、(本題5分)利用Python的Keras庫,構(gòu)建一個自動編碼器(Autoencoder)模型,對圖像數(shù)據(jù)進行壓縮和重構(gòu)。通過調(diào)整編碼器和解碼器的結(jié)構(gòu),觀察壓縮比和重構(gòu)質(zhì)量的變化。4、(本題5分)運用Python的TensorFlow框架,構(gòu)建一個基于生成式對抗網(wǎng)絡(luò)(GAN)的音樂生成模型。能夠生成具有一定風(fēng)格和旋律的音樂片段。5、(本題5分)利用Python中的PyTorch框架,構(gòu)建一個基于注意力機制的圖像生成模型,控制生成圖像的風(fēng)格和內(nèi)容。四、案例分析題(本大題共4個小題

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論