![【世界銀行】尼泊爾制磚業(yè)減排的經(jīng)濟(jì)與政策分析(英)_第1頁(yè)](http://file4.renrendoc.com/view14/M08/02/3D/wKhkGWefXgKAF6ZdAADIEbcOFAQ228.jpg)
![【世界銀行】尼泊爾制磚業(yè)減排的經(jīng)濟(jì)與政策分析(英)_第2頁(yè)](http://file4.renrendoc.com/view14/M08/02/3D/wKhkGWefXgKAF6ZdAADIEbcOFAQ2282.jpg)
![【世界銀行】尼泊爾制磚業(yè)減排的經(jīng)濟(jì)與政策分析(英)_第3頁(yè)](http://file4.renrendoc.com/view14/M08/02/3D/wKhkGWefXgKAF6ZdAADIEbcOFAQ2283.jpg)
![【世界銀行】尼泊爾制磚業(yè)減排的經(jīng)濟(jì)與政策分析(英)_第4頁(yè)](http://file4.renrendoc.com/view14/M08/02/3D/wKhkGWefXgKAF6ZdAADIEbcOFAQ2284.jpg)
![【世界銀行】尼泊爾制磚業(yè)減排的經(jīng)濟(jì)與政策分析(英)_第5頁(yè)](http://file4.renrendoc.com/view14/M08/02/3D/wKhkGWefXgKAF6ZdAADIEbcOFAQ2285.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
PublicDisclosureAuthorizedPublicDisclosureAuthorized
PolicyResearchWorkingPaper10833
EconomicandPolicyAnalysisforEmissionReductionfromtheBrickIndustryinNepal
GovindaRTimilsina
SunilMalla
MartinPhilippeHeger
WORLDBANKGROUP
DevelopmentEconomics
DevelopmentResearchGroupJune2024
PolicyResearchWorkingPaper10833
Abstract
ThebrickindustryisoneoftheprimarysourcesofcarbondioxideemissionsandlocalairpollutantsinNepal.Coal,whichaccountsforone-thirdofthecurrentnationalcarbondioxideemissionsfromfossilfuelsourcesandisentirelyimported,istheprimaryfuelinthebrickindustry.Thebrickindustryaccountsfor27percentofthetotalcarbondioxideemissionsfromcoalconsumption.Theadoptionofcleantechnologiesorfuelsinthebrickindustryiscrucialforimprovingairquality,enhancingenergyindependence,andmeetingthecountry’snationallydeterminedcontri-butionundertheParisClimateAccordandthenet-zeroemissiontargetsetfor2045.Substitutionofimportedcoalwithdomesticenergyresourcesinthebrickindustrysubstantiallyreducesthecountry’simportbills.Thisstudyexaminestheeconomicsofvariousalternativestoreducecoalconsumptionandcorrespondingemissionsfromthebrickindustry.Thestudyconsidersarangeofcarbontaxes
(US$10toUS$100pertonofcarbondioxide),anenviron-mentalfiscalpolicy.TheUS$10pertonofcarbondioxidetaxwouldincreasebrickproductioncostsby2to6percent,dependingontheenergyefficienciesofthetechnologies.IfthecarbontaxwereUS$100pertonofcarbondiox-ide,thecostofbrickswouldincreaseby12to36percent.However,implementationofthepolicymaynotbesuc-cessfulwithoutenablinglowercost,cleanalternatives.Forexample,replacingmorecoalwithbiomassprovidesdirectcostandenvironmentalsavingsbutwouldrequirerelaxingstrictforestprotections.Thestudyrecommendsvariouspromotionalpoliciesfornon-firedalternativebricks.ItalsoarguesthatsinceusingelectricityforfiringbricksisanidealoptionforreducingemissionsfromthebrickindustryinNepal,thegovernmentanddevelopmentpartnersshouldprioritizepilotprojectsforelectrickilns.
ThispaperisaproductoftheDevelopmentResearchGroup,DevelopmentEconomics.ItispartofalargereffortbytheWorldBanktoprovideopenaccesstoitsresearchandmakeacontributiontodevelopmentpolicydiscussionsaroundtheworld.PolicyResearchWorkingPapersarealsopostedontheWebat
/prwp
.Theauthorsmaybecontactedatgtimilsina@.
ThePolicyResearchWorkingPaperSeriesdisseminatesthefindingsofworkinprogresstoencouragetheexchangeofideasaboutdevelopmentissues.Anobjectiveoftheseriesistogetthefindingsoutquickly,evenifthepresentationsarelessthanfullypolished.Thepaperscarrythenamesoftheauthorsandshouldbecitedaccordingly.Thefindings,interpretations,andconclusionsexpressedinthispaperareentirelythoseoftheauthors.TheydonotnecessarilyrepresenttheviewsoftheInternationalBankforReconstructionandDevelopment/WorldBankanditsaffiliatedorganizations,orthoseoftheExecutiveDirectorsoftheWorldBankorthegovernmentstheyrepresent.
ProducedbytheResearchSupportTeam
EconomicandPolicyAnalysisforEmissionReductionfromtheBrickIndustryinNepal1
GovindaRTimilsina,SunilMalla,MartinPhilippeHeger2
KeyWords:Nepal,BrickIndustry,BrickManufacturingTechnologies,EconomicAnalysis,EmissionReduction.
1TheauthorswouldliketothankCarolynFischer,AngilaMisra,andArtiShresthafortheirvaluablecommentsandsuggestions.TheviewsandinterpretationsareoftheauthorsandshouldnotbeattributedtotheWorldBankGroupandtheorganizationstheyareaffiliatedwith.WeacknowledgetheWorldBank’sSouthAsiaDepartmentforEnvironmentandBlueEconomyforfinancialsupport.
2GovindaTimilsina(gtimilsina@)andMartinHeger(mheger1@)are,respectively,SeniorResearchEconomistandSeniorEnvironmentalEconomist,atWorldBankGroup.SunilMalla(malla.sunil@)isaShort-termConsultanttotheWorldBankGroup.
2
1.Introduction
Nepaldependsonimportsforitsfossilfuelsupplies.Thisimpliesthatalmostallfuel-basedCO2emissionsandmostofthelocalairpollutantsarecausedbyimportedfuels.Coal,themostcarbon-intensivefuel,currentlyaccountsfor36%ofthetotalnationalCO2emissionsfromfossilfuelcombustion.3Brickmakingisanenergy-intensiveprocessduetothehigh-temperatureheatrequirementandcoalisthemostcommonfuelusedforheatinNepal.Thebrickindustryaloneconsumesmorethanone-thirdofthetotalcoalsupplyinNepal(ICIMOD,2019a),andthisindustryaccountsfor27%ofthetotalnationalCO2emissionsfromcoalconsumption(Sadavarteetal.,2019).SeveralcitiesinNepalaresufferingfromlocalairpollutionasthepollutionlevelsaremanytimeshigherthanstandardssetbytheWorldHealthOrganization(WHO).ThecapitalcityKathmanduwastheworld’smostpollutedcitywithitsAirQualityIndex(AQI)265at11:06amonApril10,2024.Thefineparticulatematterpollution(PM2.5)levelwas34timestheWHO’sannualairqualityguidelinevalueatthattime.4BrickkilnsareoneofthesourcesofPM2.5emissionsinthecity.The2023averagePM2.5concentrationinNepalwas8.5timestheWHOannualairqualityguidelinevalue.5
Nepalisexperiencingrapidurbanizationandpost-earthquakereconstructionofbuildingswithrisingdemandforbricks.Forexample,betweenthelasttwocensusyears(2011and2021),thenumberofhousingunitsbuiltwithbrickwallsincreasedby21%(CBS,2014;NSO,2023).Ifthecurrentpracticeofbrickmanufacturingcontinues,CO2emissionsfromthebrickindustrywillincrease,therebychallengingNepal’sabilitytomeetitsnationallydeterminedcontribution(NDC)by20306andnet-zeroemissiontargetby2045.Moreover,localairpollutionfromthebrickindustry,particularlyPM2.5,causesmajorhealthproblems.ItisestimatedthatambientPM2.5caused11,619deathsin2015,andaroundone-fifthofthetotalPM2.5inthecountryisemittedfrombrickkilns(WorldBank,2019).
3WhatarethemainsourcesofCO2emissionsinNepal?
/countries/nepal/emissions#what-are-the-main
-sources-of-co2-emissions-in-nepal
4“Kathmanduworld’smostpollutedcity,again”.KathmanduPost,April10,2024.
/climate-environment/2024/04/10/kathmandu-world-s-most-polluted-city-again
.5
/nepal
.
6NepalhasnotspecifiedanemissionreductiontargetundertheNDC,insteadithasspecifiedactivitiestobeundertaken.Theseinclude:(i)expandingcleanpower(mainlyhydro)capacityfromcurrent3,000MWto15,000MW;(ii)90%ofallpassengervehiclessoldtobeelectric;(iii)25%ofhouseholdstoswitchtoelectriccooking;and(iv)maintainingcurrent45%ofthetotalareaofthecountrycoveredbyforest(MOFE,2021).
3
Intheabsenceofalternativefuels,coaluseforfiringclaybrickshasbeencontinuouslyincreasinginthecountry.Forexample,between2010and2022,coalimportsincreasedbymorethanfourfold,from244milliontonsin2009to1,248milliontonsin2022(NTIP,2023).7MostcoalisimportedfromIndia,Indonesia,theUnitedStates,SouthAfrica,andAustralia,andaverysmallquantityoflow-gradeligniteisdomesticallyproduced.Coalaccountedforabout7%ofthetotalfossil-fuelimportsinNepalin2018(CBS,2022b).
TheGovernmentofNepalhasenactedseveralpoliciestoreduceenvironmentalandsocialdamagefromthebrickindustry.Thekeypoliciesspecifictothebrickindustryincludei)thebanontraditionalBullTrenchkilnswithmodernkilns,suchaszig-zag,verticalshaftbrick,tunnel,andHoffmankilns,in2009,andii)thepromotionofrelativelyenergy-efficientverticalshaftbrickkilnsin2010(SMSEE,2017).Thegovernmenthasalsoupgradedstandardsonemissionsandstackheightfordifferentkilntypesin2018frompreviouslypromulgatedstandardsin2008(MOFE,2018).Inresponsetogovernmentregulations,brickkilnsincreasinglyadoptedazig-zagtechnologysystem.Thezig-zagtechnologyreducedtheemissionsofsuspendedparticulatematters(SPMs)from700mg/Nm3(government-allowedrate)to113mg/Nm3.8Likewise,thegovernment’sbrickindustry-specificdirectives/guidelinesrelatedtooccupationalsafetyandhealth(OSH)forworkersin2017includei)notmorethan8hoursofdailyworkwithhalfanhourofrestafter5hoursofcontinuouswork,ii)relativelyshorterworkdurationforworkersinvolvedinthefurnaceandbrickfiringarea,andiii)prioritizationofdustcontrolandtheregulationofnoiseinthebrickindustry(ILOandMOLESS,2022).
Despitethegovernment’seffortstoreducetheenvironmentalandhealthexternalitiesofthebrickindustry,theshifttowardmodernandclimate-friendlybrickproductionhasbeenslowinNepal.Forexample,theverticalshaftbrickkiln(VSBK)9representslessthan2%ofallkilnsandtheremaining1%ofallkilnsareHoffmankiln(HK)andTunnelKiln(TK)(ICIMOD,2019a).Thelimitedresponseofthebrickindustrytowardsgovernmentregulationsindicatesthatsome
7Importedcoalismainlyusedbythebrickandcementindustries,buttheshareofcoalusedbytheseindustriesinNepalisnotwelldocumentedbecauseindustrieshavetheoptiontoimportcoaldirectlyfromothercountries(WECS,2023).
8“Brickkilnsadoptingzig-zagtechnology”.TheHimalayan.Dec31,2016.
/business/brick-kilns
-adopting-zig-zag-technology
9Despiteaneffortfromthegovernmentandinternationalagencies(e.g.,SwissAgencyforDevelopmentandCooperation,SwissResourceCenterandConsultanciesforDevelopment,St.Gallen,Switzerland,andDevelopmentAlternatives,India)intransferringandhelpingtoestablishVSBKtechnologytoclay-firedbrickentrepreneursintheearly2010s,itsuptakehasbeenlow.AstudybyEiletal.(2020)reportedabout38VSBKsinNepal,including3inKathmanduValley,ofwhichonly1isinoperationasof2016.ThestudyfindsinferiorqualityofbricksproducedandhigherinitialinvestmentrequirementscomparedtootherbrickkilnsarethemainreasonsforthelowuptakeoftheVSBKs.
4
otherpolicymeasures,suchaspricingandfiscalmeasures,wouldbenecessarytoreduceCO2andlocalairpollutantsfromthebrickindustry.However,beforethegovernmentconsiderspricingpolicies,itisnecessarytounderstandthetechnicalaswellaseconomicfeasibilityofthosepolicies.NorigorousandquantitativeanalysesareavailableforNepalinthisarea.Thisstudyaimstocontributetofillingtheknowledgegaps.
Themainobjectiveofthisstudyistoexaminetheeconomicsofvarioustechnologiesandfuelsforclay-firedbrickproduction,suchastheadoptionorretrofitofenergy-efficienttechnologies,applicationofcleanerrenewable(zerocarbon)biomassfuels(e.g.,sustainablefuelwood,woodpellets/chips,sawdust,andbagasse),andelectrictechnology.Thisstudyalsoexaminestheeconomicsofresource-efficientbricks10(e.g.,CompressedStabilizedEarthBlocks(CSEB)andHollowConcreteBlock(HCB))andmodificationofbrick-basedbuildingswithothersustainablealternatives(e.g.,wood-framestructureswithplywoodforroof,wall,andfloorbuildings)inreducingharmfulairpollutionbyreducingdemandforclay-firedbricksinthefuture.Thestudyconductedeconomicanalysisfrombothprivateandsocialperspectivesbasedonatechno-economicanalysisframeworkforthebrickindustry.Thestudyalsoutilizestheinformationcollectedthrougharapidfield-visitsurvey,physicalobservationsof22brickkilnsselectedacrossthecountry,andconsultationwithbrickindustryexpertsinNepal(TimilsinaandMalla,2023).
Thepaperisorganizedasfollows.Section2brieflyintroducesNepal’sbrickindustry,followedbymethodologicaldevelopmentinSection3.DatacollectionthroughasurveyisbrieflydiscussedinSection4.ThemainresultsalongwithsensitivityanalysesarepresentedinSection5.Section6presentspolicyimplications/recommendations.Section7concludesthepaper.
2.OverviewofNepal’sBrickIndustry
In2018,therewereabout1,349operatingbrickkilnsinNepal,11andtheyproducedanestimated
5.14billionbricks,andthebrickindustrycontributed4%totheGDP,andemployednearly
10Resource-efficientbrickshererefertobricksproducedusingsand,stonedust,cement,andsoilmixedindifferentproportionsandthatdonotgothroughthefiringprocess.Sincetheyareuncooked,theirlifetimeisshorter(20-30years)ascomparedtothefiredbrickswhichlasthundredsofyears.
11ThebricksectorinNepalisapoorlyregulatedandunorganizedsector,andinformalinnature.Thebricksectorstatistics,suchasthenumberofregisteredbrickkilns,theirproductionvolumeandkilntechnologytypes,thenumberofpeopleinvolved,andthequantityofenergyconsumptionandtypes,areingeneralnotwelldocumented.Thetaskofcapturingthesedataischallenging.Forinstance,thereisawidevariationinnumberofbrickkilns(registeredorinoperation)andvolumeofbrickproductionstatisticsinNepal.Forexample,ILOetal.(2020)reported966kilnsproducing3.04billionbricksin2018,ICIMOD(2019a)reported1,349kilnsproducing5.14billionbricksin2018,FNCCI(2017)estimated1,100kilnsinoperationin2012withaproduction
5
246,000people(CBS,2022a;ICIMOD,2019a).AbriefsnapshotofNepal’sbrickindustryissummarizedinTable1.
Table1:SnapshotofNepal’sbrickindustry
Parameter
Year
Value
DataSource
Numberofbrickkilns
2018
1,349
(ICIMOD,2019a)
Distributionofkilnsbyprovincea
2018
P1(8.8%),P2(30.2%),P3(21.2%),P4(6.4%),P5(23.4%)andP7(9.8%)
(ILOetal.,2020)
Annualproduction
2018
5.14billion
(ICIMOD,2019a)
Valueofannualoutputb
2020
NRs14billion
(CBS,2022a)
ContributiontoGDP
2020
4%
(CBS,2022a)
Coalconsumption
2018
504,750tons
(ICIMOD,2019a)
CO2emissions
2016
2.2milliontons
(Eiletal.,2020)
Totalindustryemploymentc
2018
186,150
(ILOetal.,2020)
Brickpriceindex(2015=100)
2021
127
(CBS,2022b)
AAGRdoftheconstructionindustry
2013-22
6.3%
(CBS,2022b)
Notes:aP1isKoshi,P2isMadesh,P3isBagmati,P4isGandaki,P5isLumbiniandP7isSudurpachimprovinces.Karnali
provincereportedonly2kilnsintheoperation.bBasedonthesumofthreenationalclassificationsofindustrialcodes(NSIC),
i.e.,2391,2392,and2393.cOutoftotalemployment,95%aremanualworkersand5%areadministrativeworkers.Abouthalfof
themanualworkersareofIndianorigin.Thetotalbrickindustryemploymentrepresentsabout17%ofthecountry’stotalmanufacturingindustryworkforce.dAAGRistheaverageannualgrowthrate.
ThebasictypesofbrickkilnsforfiringclaybricksinNepalaretheclampkiln(CK),fixedchimneybull’strenchkiln(FCBTK),improvedzigzagkiln(ZZK),verticalshaftbrickkiln(VSBK),Hoffmankiln(HK),andtunnelkiln(TK).Thesekilnscanbeclassifiedastraditionalormodernkilns.12However,traditionalkilnsdominateallkilns,representingabout76%ofallkilns(ICIMOD,2019a).Amongthesetypesofbrickkilns,theCKandFCBTKaretheleastenergyefficientandmostpollutingwhiletheTKisthemostenergyefficientandleastpolluting.ItispossiblethatFCBTKscanbeupgradedtoimprovedZZKsbecauseofthesimilarityintheirtechnicaldesigns.However,veryfewFCBTKareconvertedtoZZKkilnsduetoalackofskilled
capacityrangingfrom15,000to50,000bricksperday,Eiletal.(2020)reported1,595kilnsproducing4.9billionbricksin2016,andDOI(2022)reportedtotalnumberofregisteredkilnssince1993as1,577attheendof2018andCBS(2022a)reported1,008registeredbrickkilnsin2018buttheirinformationonhowmanyofthemareinoperationisnotavailable.Manyfactorscontributetothesewidevariationsinthenumberofkilns,suchastheoperationofseveralnon-registeredbrickkilnsaroundthecountry,andpoorgovernmentdocumentation.
12Thereareseveralclassificationsofclay-firedbrickkilns,e.g.,intermittent,andcontinuouskilnsbasedontheproductionprocess,up-draught,down-draft,andcross-draftkilnsbasedonairflow,andnaturalandinducedorforceddraftkilnsbasedonthemethodofproductionKumarandMaithel(2016).Weclassifybrickkilnsaseithertraditionalormodernbasedonthecombinationofkilntechnologydifferentiatedbytheirspecificenergyconsumption(SEC),i.e.,theenergyrequiredinMJtoproduce1kgofclay-firedbrick,thequalityofbrickproduced,brickquality,laborproductivity,andemissions.Inthisstudy,sixbrickkilnsareconsideredthatareoperatedinNepal.Twoofthesesixkilns(CKandFCBTK)areconsideredastraditionalkilnsandtheremainingfour(ZZK,VSBK,HKandTK)areconsideredasmodernkilns.NotethatmodernkilnshavebetterSEC(fuelefficiency)andloweremissions,betterbrickqualityandhigherlaborproductivitythanthetraditionalkilns.SimilarterminologiesareusedbyEiletal.(2020).WeconsiderZZK,whichisanimprovedandretrofittedversionofFCBTK,asmodern,becauseitcanpotentiallyachievegreaterfuelefficiencyduetooptimizedairflowandreducedheatloss(Maitheletal.,2013;Tibrewaletal.,2023).
6
workersfortheconstructionandoperationofZZKs,andthelimitedaccesstofinancingtheinvestmentrequirementforbrickkilnowners.
Thealternativebricksdefinedearlierhavetwotypes:fly-ashbricksandsolidorhollowblocks)(Rawaletal.,2020).Thefly-ashbricksaremadeinmechanizedplantswhereapan-mixerisusedtomixfly-ash(aby-productofcoalcombustion)withsand,stonedust,lime,andcementtopreparetherequiredblendofthemixture.Similartofly-ashbricks,thesolidorhollowblocksusedinbuildingconstructionaremadeinsemi-mechanizedormechanizedplantsbymixingtherequiredblendofrawmaterials,e.g.,solidorhollowconcreteblock(mixtureofcement,sand,andfinegravel),autoclavedaeratedconcrete(mixtureofsand,gypsum,lime,cement,andaluminumpower),andcompressedstabilizedearthblock(mixtureofsoil,sand,finegravelandcement).Themaindifferencebetweenthesealternativebricksisthecompositionofdifferenttypesofrawmaterials.Themainadvantagesofthesealternativebricksarebetterchemicalcompositionandareductionintheenvironmentalfootprint(Vasi?etal.,2021).ThesealternativebricksaregainingpopularityinNepalduetorecentclimate-relatedpolicies,however,theircurrentactualproductionandshareinthecountry’stotalbricksproductionarerelativelysmallandlimitedtourbanareas.
3.MethodologyfortheEconomicAnalysis
Forthisstudy,atechno-economicassessmentthatmakesadistinctionbetweentheprivateandsocialcostsofbrickproductionisdeveloped.Thetechno-economicassessmentprimarilyfocusesontheproductionphase,reflectingtheperspectiveofaproducer,andanalyzesthetechnicalandeconomicviabilityofswitchingtocleanerfuelsfromexistingcoalinbrickproduction.
Therearethreeprimarysystemelements(preparation,mechanization,andbaking)thatarenecessarytomaketheclay-firedbrick.Process1(preparation)makesuseofmachine,electricity,diesel,animal,andhumanlabor,process2(mechanization)makesuseofmachine,electricity,andhumanlabor,andprocess3(bakingorfiringtechnology)makesuseoffossilandbiomassfuels.Allthreeprocessesoperateinaflowprocessovertheyearexceptforplanneddowntime(Figure1).Thecostsassociatedwithonlyactivitiesthattakeplacewithinthebrickkilnareasareconsidered.Otheractivitiesandcostsoutsidethekilnareas,suchastransportationofrawmaterials
7
orfinalproductcosts,areexcluded.Forinstance,inFigure1,thecostestimationinthisstudyisassociatedwithonlymechanizationandbakingtechnology.
Mechanization
Animal,diesel,electricity
Electricity
Rawmaterial1
Coal,lignite,sawdust,
firewood,rickehusk,
bagasse,briquette,LPG
Claymining/Preparation
Molding/Drying
Finalproduct
Rawmaterial2
Water
Rawmaterial3
Clay
Baking/Firing
BakingTechnology
Preparation
Figure1:Thebrick-makingprocesses
Economicanalysesareconductedfrommultipleperspectives.First,thecurrentproductioncostsarecomparedbytechnologiesandbyprovincesfromaprivate(financial)perspective.Thisisfollowedbythecomparisonofcostsfromasocialperspective.Fromtheprivateperspective,theproductioncostsincludecapitalexpenditures(e.g.,costsofakiln,landrental,andregulatoryandcomplianceequipmentcosts),energycosts(e.g.,coal,biomass,andelectricity),laborcosts,andthecostofmaterials(e.g.,clay,water,andadditives).Thesocialproductioncostsincludeenvironmentalandhealthdamagecostsassociatedwithbrickproductioninadditiontotheprivatecosts.Thestudyalsoincludestheeconomicsofthesubstitutionofcoalwithadvancedbiomassfuelsforcommonlyusedbrickproductiontechnology(ZZK)andtheproductionofalternativebricks.Alltheseeconomicanalysesusetheinformationfromthetechno-economicassessmentandtherapidsurveyconducted.
First,weestimatedtheprivatecostofproducingclay-firedbricksinNepal.Theprivatecostofbrickproduction(cip,j(t))foreachprovince(i)andeachtechnologytype(j)inNepalincludesoperationalexpenditures(OpEx)andcapitalexpenditures(CapEx)foraparticularyear(t)(Equation1).
cj(t)=OPExi,j(t)+caPExi,j(t)(1)
Theoperationalexpenditures[OPExi,j(t)]representtheongoingmanufacturingcostsrequiredtoproduceabrick(Equation2).Itincludesdirectandindirectcosts.Thedirectcosts
8
includetherawmaterials(e.g.,clay,water,andenergycosts)andlaborcosts,andtheindirectcostsincludeoperationandmaintenancecosts,andutilities.Theoperationalexpenditurecanalsobedividedintovariablecostsandfixedcosts.Variablecostsdependdirectlyontheamountofproductproduced(e.g.,rawmaterials)andfixedcostsdonotdirectlydependontheamountofproductproduced(e.g.,labor).Therearethreemaincomponentsofoperationalexpenditures(Equations2.1-2.3).
OpExi,j(t)=Ri(t)+Li(t)+O&Mi,j(t)(2)
wherek={w(water),c(clay),e(energy)}
Li(t)=Σi+Othersi(t)(2.2)
O&Mi,j(t)=ui,j(t)+Mi,j(t)(2.3)
Thefirstcomponentistherawmaterialscost[Ri,j(t)](Equation2.1).Therawmaterialsforbrickproductionincludewater,clay,anddifferentenergysources.Thecostsassociatedwithwaterandclayrawmaterialsthatareusedduringthemoldingprocessandthecostsassociatedwithenergysourcesthatareusedduringthebaking(firing)process.Thepricesandthequantityofrawmaterialsrequiredforbrickproductionareobtainedfromthesurveyandtechno-economicassessment.Thesecondcomponentisthelaborcost[Li(t)]whichhastwoparts(Equation2.2).Thedirectlaborcostisestimatedusingatechno-economicassessmentandthesurvey,suchastheaveragewageandtheweightofabrick,andawageindexthatvariesacrosstheprovinces(i).Theindirectlaborcosts(others)suchaspurchasingofofficesuppliesandadvertisements,areexcludedfromthestudy.Inthisstudy,weassumethelaborcostsareindependentofthetechnologyusedforbrickproduction.Thethirdcomponentistheoperationandmaintenancecosts[O&Mi,j(t)](Equation2.3).Thesecostsincludeutilities[ui,j(t)],suchaselectricityforlightingandbrickmoldingprocessbutnotforbrickfiring,andthemaintenancecostofthebrickkiln[Mi,j(t)].
Thecapitalexpenditures[capExi,j(t)]includethefixedcapitalinvestment(e.g.,landandchimneycost)andothercostitemssuchasinsuranceandcontingencies(Equation3).Weusea
9
simplefinancialfunction(PMT)tocalculatethefuturecapitalexpenditurepaymentsforaloan,assumingconstantpaymentandaconstantcostofcapital.Thefixedcapitalinvestmentfortheland[capLi,j(t)]andchimney(technology)[capTi,j(t)]isestimatedusingthePMTfunctionandthetechnicalparameters(Equations3.1and3.2).InPMTestimation,PLandPTaretheperiodicpaymentamountsforlandandchimney,risthecostofcapital(interestrate),andnisthetotalnumberofpaymentsoverthelifetimeofthebrick-makingplant.Thetechnicalparametersincludetheweightofthebrick[wi,j(t)]andthetotalnumberofbrickproductionsineachyear[Ni,j(t)].However,inthisstudy,thepaymentincludesprincipalandinterestbutexcludestaxes,reservepayments,orfeessometimesassociatedwiththeloans.Thecostiscalculatedfortheentireplantover1yearwhenproducingthespecifiedannualproductionvolume,leadingtoanNRsperyearmetric.Thepercentagesofmanufacturingoverheadcosts(insurance)arealsocalculated[capIi,j(t)](Equation3.3).Itisestimatedusingtheannualinsurancepercentage[Iratei,j(t)]ofland(L)andtypesofequipment(q)suchaschimneysandothermachines,andthetechnicalparameters.
capExi,j(t)=capLi,j(t)+capTi,j(t)+capIi,j(t)(3)
capIi,j(3.3)
Second,aspartofthesensitivityanalysis,wealsoestimatedtheaveragecostofbrickproduction[cjp(t)]underdifferentcoalpricesandcarbontaxesforcommonlyusedbrick-makingtechnologiesatthenationallevel(Equations4and5).Theestimatedaveragecostofbrickproductionissimplythedifferencebetweenthecurrentcostofbrickproduction[cp(t)]andthechangesincostduetocoalprices[Δcjp(t)]andcarbontaxes[cTrate(t).cEj(t)],wherecTrateisthecarbontaxrateandt
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年度市政道路鋼筋施工分包合同
- 便利店?duì)I業(yè)員個(gè)人工作總結(jié)2024(9篇)
- 2025年電影產(chǎn)業(yè)收益分配策略協(xié)議
- 2025年臨時(shí)建筑項(xiàng)目施工合同樣本
- 2025年鑄幣及貴金屬制實(shí)驗(yàn)室用品項(xiàng)目申請(qǐng)報(bào)告模板
- 2025年聚苯硫醚(PPS)及合金項(xiàng)目規(guī)劃申請(qǐng)報(bào)告
- 2025年升級(jí)版?zhèn)€人代表授權(quán)合同
- 2025年小區(qū)護(hù)衛(wèi)服務(wù)合同范本
- 2025年醫(yī)療機(jī)構(gòu)衛(wèi)生用品清潔服務(wù)協(xié)議
- 2025年公民投票統(tǒng)一授權(quán)協(xié)議
- 八年級(jí)道德與法治下冊(cè)研課標(biāo)、說(shuō)教材-陳俊茹課件
- 建筑施工安全風(fēng)險(xiǎn)辨識(shí)分級(jí)管控指南
- 政務(wù)信息工作先進(jìn)單位事跡材料
- 《觸不可及》影視鑒賞課件
- 冀教版五年級(jí)英語(yǔ)下冊(cè)教學(xué)計(jì)劃(精選17篇)
- 外科感染教案
- 《一頁(yè)紙項(xiàng)目管理》中文模板
- 密度計(jì)法顆粒分析試驗(yàn)記錄(自動(dòng)和計(jì)算)
- 英語(yǔ)演講-機(jī)器人發(fā)展
- JJF(紡織)064-2013織物防鉆絨性試驗(yàn)儀(摩擦法)校準(zhǔn)規(guī)范
- JJF 1905-2021磁通計(jì)校準(zhǔn)規(guī)范
評(píng)論
0/150
提交評(píng)論