![模塊化機(jī)器人理論與應(yīng)用(公開(kāi))_第1頁(yè)](http://file4.renrendoc.com/view14/M03/14/11/wKhkGWefkPuAe6JeAAGF24sc8tw672.jpg)
![模塊化機(jī)器人理論與應(yīng)用(公開(kāi))_第2頁(yè)](http://file4.renrendoc.com/view14/M03/14/11/wKhkGWefkPuAe6JeAAGF24sc8tw6722.jpg)
![模塊化機(jī)器人理論與應(yīng)用(公開(kāi))_第3頁(yè)](http://file4.renrendoc.com/view14/M03/14/11/wKhkGWefkPuAe6JeAAGF24sc8tw6723.jpg)
![模塊化機(jī)器人理論與應(yīng)用(公開(kāi))_第4頁(yè)](http://file4.renrendoc.com/view14/M03/14/11/wKhkGWefkPuAe6JeAAGF24sc8tw6724.jpg)
![模塊化機(jī)器人理論與應(yīng)用(公開(kāi))_第5頁(yè)](http://file4.renrendoc.com/view14/M03/14/11/wKhkGWefkPuAe6JeAAGF24sc8tw6725.jpg)
版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
模塊化機(jī)器人理論與應(yīng)用楊桂林中科院寧波工業(yè)技術(shù)研究院先進(jìn)制造技術(shù)研究所致謝:新加坡制造技術(shù)研究院 (SIMTech)OutlineIntroduction
to
Modular
Reconfigurable
Robot
System
(MRRS)Serial
MRRSModularRobot
AssemblyRepresentationConfiguration-independent
Kinematics
andDynamics
ModelingKinematicCalibrationTask-based
Designof
Serial
MRRS
ConfigurationsParallelMRRSKinematics
Modelling
andAnalysisSingularityandWorkspace
AnalysisKinematicCalibrationTask-based
Designof
Parallel
MRRS
ConfigurationsQ&AConventional
Industrial
RobotsAconventional
industrial
robot
consists
ofmonolithically
designed
joints
andlinks,
which
has
a
fixed
configurationonce
it
iscommissioned.6-DOF
PUMA
Type4-DOF
SCARA
Type6-DOF
Parallel
TypeModular
Reconfigurable
Robot
SystemModularFlexible
Re-usableEconomicalA Modular Reconfigurable Robot System (MRRS) consistsof a collection ofstandard
actuator
(joint)
and
end-effector
modules
and
customer
designed
links/connectors that can be assembled into different robotdiversity
of
tasks.configurationsfor aModular
Recon幣gurable
Robot
Systems先進(jìn)制造技術(shù)研究所@
中國(guó)科學(xué)問(wèn)材陽(yáng)與工程研究所思rJ
中國(guó)科學(xué)院寧波工業(yè)技術(shù)研究院
(籌〉
Embedded
MotionControllerNetworkCommunicationIntegrated
ServoAmplifierBuilt-inEncoderand
SensorsBrushlessDCServoMotorGear-boxMagneticBrakeBearingAnIMAis
aself-contained,
independent,and
intelligent
actuator
withitsownmotion
control
capabilities.AnIMAis
acompactintegration
of
aservo-motor,
an
amplifier,acontroller,anencoder,
abrake,agearbox,and
thecommunication
interface.Advantages:– Compact
-highlyintegrated
product––––––Intelligent
-
built-in
controller
andsensorSimplewiring
-
onecable
technologyEasy-to-use
-plug&play
capabilitiesReconfigurable-
self-containedRapidlyDeployableEconomicalIntelligent
Modular
Actuator(IMA)智能模塊化執(zhí)行機(jī)構(gòu)Network-based
Distributed
ControlSchemeConventional
Centralized
Control(Complicated
Wiring
Scheme)Decentralized/Distributed
ControlMRJModuleARM
ModuleSmart
MotorPowerCube
ModuleSilverMaxMotorCoolMuscle
MotorMAC
MotorCommercial
Available
IMAsCommercial
Available IMAs
(SHUNK)PRUniversol
rotory
module
with
integroted
con
trol
e
lectroni(sPan-Tilt-Unit
with
integroted
control
elec↑lonics(ompoct
Rotory
module
withintegrated
control
ele【tronicsRotory
module
with
integroted【ontrol
electronics
0
nd
hollow
sh
oftMRDHigh
Power
Rotory
module
with
integroted
con
trol
elec↑ron
icsRotary
module
with
torque
motor(ompoctwrist
module
with
in↑egrated
control
electron
icsMinioture
rotary
module
with
inte
grote
d
control
electronics先進(jìn)制造技術(shù)研究所中國(guó)科學(xué)院寧波材料技術(shù)與工程研究所中國(guó)科學(xué)院寧波工業(yè)技術(shù)研究院(籌〉
Commercial
Available IMAs
(SHUNK)PSM(ompoct
Servo
Drive
withintegroted
control
electroni
【SPlS5αew
driven
lineor
Dxis
with
servoarive
PSMPDU(ompoct
Servo
Drive
with
in愴
groted【ontrol
electronics
ond
pre【ision中國(guó)科學(xué)院寧波工業(yè)技術(shù)研究院(籌〉PLB8elt
driven
li
neor
oxis
with
servo
drive
PDU
MSMHigh
Power
Servo
Motor
with
integroted
(ontrol
electronicsHMulti缸is
light-Weight-Arm
F.斤Sensing
Pockoge先進(jìn)制造技術(shù)研究所中國(guó)科學(xué)院寧波材料技術(shù)與工程研究所Commercial
Available
IMAs
(SHUNK)'KHH&EE--wrshHVnv薩、,嚴(yán)LRUV
aMHLJH陽(yáng)uwf
.f,a、
薩'""川AEdi刷《口自mmd
M吶υ
nH同叫
晶。戶配M
·r-、"JufEmemu呻r舊nMMmuvnunHWJ川HHFhuwRFEP
LE-2.fin
ger
Parolle
I
Grippe
r
with
vorio
ble
strokePEHLong
-stroke
Gripper
with
integrated
contml
electmnicsEZNServ<rele
cfric
3-Finger
Gentrli.cGrippe
rGripper
for
smoll
(omponentsWSG2-Fillger
PO
ralle
I
Grippe
r
withintegratedl
,electronics
in
the
fingersEGNServo",electric
2-Finger
Porollel
GripperSDH3-finger
dextrous
roboti
c
hondwith
7
DOF中國(guó)科學(xué)院寧波工業(yè)技術(shù)研究院(籌〉
先進(jìn)制造技術(shù)研究所中國(guó)科學(xué)院寧波材料技術(shù)與工程研究所Modular
Robot
Assembly
RepresentationA
MRRS
canhave
many
possible
robot
configurations.To
automaticallyformulate
the
kinematics
and
dynamicsmodels,
a
mathematic
representationmethod
needs
tobe
proposed
for
modularrobot
assemblies.Modular
Robot
Assembly
Representation-
AGraph
Based
ApproachKinematic
Graph:Kinematic
chains
oflinks
and
joints
can
berepresented
by
graphs.One
logical
way
to
convert
a
kinematic
chain
to
a
graph
is
to
replace
thejoints
by
edges
and
links
by
vertices
as
a
joint
can
be
connected
to
two
linksonly
and
alink
may
accept
more
than
one
joint.Such
a
graph
representation
is
called
a
kinematic
graph
and
has
been
widelyused
in
mechanism
synthesis
and
design.b dabcdfeffcfaeModular
Robot
Assembly
RepresentationJp3Jr2J
r1J
f1L
c2L
p2L
r1L
r1L
c1 Basezyx(a)
ModularRobot
Assembly(b)
Kinematic
GraphL
c1J
f1Base(p1,
p2),
wherep1,
p2
{
x,
y,
z}
andp1
p2.z yx zy xxyzzyxL
r1J
r1L
r1Jr2L
p2Jp3L
c2c
20
Lr1
Lc1
Lr1
J
f
1
0
(
z,
y)
(
z,
y)
0 0(
z,
x) 0(
x,
y) (
z,
y)000Jr1 Jr
2 J
p3Assembly
Incidence
Matrix
(AIM)Extended
Incidence
Matrix
(eIM)p
2
c
2
r1Definition
(Assembly
Incidence
Matrix):
LetG
bethespecialized
graph
of
amodular
robot
and
M(G)
be
its
eIM.
The
assembly
incidence
matrix
(AIM)
of
this
robotA(G)
is
defined
by
substituting
each
of
1s
in
M(G)
with
the
corresponding
port
vector
P
=Incidence
Matrix
0 0 (
z,
x) (
z,
x)Lp2
000(
y,
z)L
11010000Lc1
r1
00101101L
0001L
J
f
1J
r1J
r
2J
p30
Mathematical
Background(Group
Theory
andDifferential
Geometry)Rigidbody
motion
–
SpecialEuclidean
Group,
SE(3) (
Lie
Group)Instantaneous
rigid
body
motion
-se(3) (
Lie
Algebra
)Relationshipbetween
LieGroup
(T
SE(3)
)and
Lie
Algebra
( ?s
se(3))
SE(3),
with
R
SO(3)
and
p
3
14
4
0 1
R p
T
so(3)
and
v
(v
,
v
,
v
)
3
1
4
4
0
0
z
y
0with
ω?
se(3),v
0 0
s?
ω?
x
x y zy xzv
(v
,
v
,
v
)
3
1with
(
,
,
)
3
1
ands?
s
(v,
)
6
1,x y zx y zsuch
that s?
Log(T
)se(3)LogSE(3)
Exp
SE(3) such
that
T
es?
.se(3)Mathematical
BackgroundMatrix(Twist)
Exponential(1)(1)Mathematical
BackgroundMatrixLogarithm:Adjoint
RepresentationAn
element
ofaLie
group
can
be
identifiedwitha
linearmapping
betweenitsLie
algebra
viathe
AdjointRepresentation.Forevery
T
SE(3)
and s?
se(3),
theadjoint
map
AdT
:
se(3)
se(3)
is
defined
by:Mathematical
Background.s
R ?pR
0 R
AdT
(
s
)
AdT
(
?s
)
T
?s
T6
6
1
Elements
ofa
Liealgebra
can
also
be
identified
withalinear
mapping
betweenitsLie
algebra
viathe
Liebracket.
Given
an
element
x
se(3),
its
adjointrepresentation
isthe
linear
map
adx
:
se(3)
se(3),
defined
by
adx(y)
=[x,
y].Ifx
=(
1,
1)
and
y
=
(
2,
2)
are
elements
of
se(3),Kinematic
Modeling:
D-HParameters
v.s.
POEParametersKinematic
transformation
for
two
adjacent
links– Dyad
Kinematics
with
D-HRepresentation– Dyad
Kinematics
with
POE
RepresentationConversionFrom
POE
parameters
to
D-H
parameters:
DirectandUniqueFromD-Hparameters
toPOEparameters:
Non-unique
but
Flexible?si
qiTi
1,i
(qi
)
Ti
1,i
(0)eFor
a
revolute
joint,
qi
i
;
For
a
prismatic
joint,
qi
di
.dicos
i
1,i10sin
i
1,icos
i
1,i0
sin
icos
icos
i
1,icos
i
sin
i
1,i0
sin
i
sin
i
1,i
di
sin
i
1,i
(q
)
sin
icos
i
1,icos
i
i
1,i
,
ai
1,i
,
i,
and
diai
1,ii
1,i iT
D
-
Hparameters;
0a-1,ix-1yi-1zi-1zixiyiAxis
i-1Axis
iLink
i-1Link
id
i-1,i
iziyixizi
-1xi
-1yi
-1sii
-1iLinki-2linki
-1link
iProduct-of-Exponentials
(POE)
FormulaDyadKinematicsLocal
POE
Formulaziyixizi
-1xi
-1yi
-1sii
-1iLink
i-2link
i
-1link
iq
; e
s?i
qi
SE(3).s?
s
[
ω
,
v
]T
6
1;i i i iwith ω?
i
so(3)
and
vi
;
se(3)(0)
SO(3)
and
p (0)
3
1;with
R
SE(3)
Ri
1,1
(0) pi
1,i
(0)
Ti
1,i
(0)
0 0
ω? v
s?
0 1ii iii
1,ii
1,i
4
4
4
4
3
1?si
qiTi
1,i
(qi)
Ti
1,i
(0)eBasex0y0z0xi-1yi-1xiAxis
i-1xnxn+1zi-1
(si-1
)(s
n+1
)Toolynyizi
(si
)(sn)n+1yn+1znzn+1AxisiAxisnT0,n
1
(q1
,
q2
,
...
,
qn
)
T0,1
(q1
)
T1,2
(q2
)
...
Tn
1,n
(qn
)
Tn,n
1
T (0)e
s?1q1
T (0)e
s?2q2
...
T (0)e
s?nqn
T0,1 1,2 n
1,n n,n
10 01 0 0
0 0 1 0
0 0
0
0 1
0T
(0)
0
1
0,1Automatic
Generation
ofKinematics
Model
23
1 00 1 0
1 0 0 d
0 0 0 1
0
T
(0)
0
0
2,31
d34
0
0
1
0 0
1 0 0
0 0 10 0
0T
(0)
3,4
0 1
1 0 0 0
0 1 0
0 0 0 1
0
T4,5
0
d45Jp3Jr2J
r1J
f1L
c2L
p2L
r1L
r1L
c1yzxyxzxyzzyxzyx(a)
Modular
Robot
Assembly(b)
Kinematic
GraphBaseL
c1J
f1L
r1J
r1L
r1Jr24L
p2Jp35L
c21 (0)Base0
Lc
2
Lr1
Lp2
Lc1
r1
(
z,
y)
(
z,
y)0 0 0(
z,
x) 0 0(
x,
y) (
z,
y) 00 (
z,
x) (
z,
x)0 0 (
y,
z)000p3r
2r1f
1JJJJL23Based
onthe
AIM
and
LocalPOE
formula,
wehave:T (q)
T (0)es?1q1T (0)es?2q2
T (0)es?3q3
T (0)es?4q4
T0,1 1,2 2,3 3,4 4,50,5d12d23d34d45s1
(
1,
1
)
(0,
0,
0,
0,
0,
0)s2
(
2
,
2
)
(0,
0,
0,
0,
0,
1)s3
(
3
,
3
)
(0,
0,
0,
0,
0,
1)s
(
,
)
(0,
0,
1,
0,
0,
0)4 4 412
0 01 0 0
0 0 1 d
0 0 1
0
T(0)
0
1
1,2q
(
,
100mm,
,
0,
,
,
,
,
,
)4 4 4 4 4 4 4 4xyz1Base
0x11yzx8
yzBaseLr1Lp1Jr2Lr1Lr2
JLr2Branch
1
Lc2Jr3Lr2Jr1Jp1f2 r2JLr2Lr2Lr2Lc2Jr3 Jr3Jr3Jr3Branch
2234576109Forward
Kinematics
Computation
ExampleT10,11
T0,1
(0)e T1,2
(0)e T2,3
(0)e T3,4
(0)e T4,6
(0)e T6,8
(0)e T8,10
(0)e
T0,9
(q)
T0,11(q)
s?
q s?
qs?
qs?
qs?
qs?
q s?
qT0,1
(0)e T1,2
(0)e T2,3
(0)e T3,4
(0)e T4,5
(0)e T5,7
(0)e T7,9
(0)s?1q1 s?2q2 s?3q3 s?4q4 s?5q5 s?7
q710101
1 2
2 3
3 4
4 6
6 8
8dqindT0,n
q
T0,ni
1i0,i
i
i,n)T
T T (0)es?i
qi
s?
T0,i
1
i
1,i i
i,ni,n
qi
qies?i
qii
1,i
(0)0,i
10,n
T s?
T
(T
T
TndTo,n
T0,i
s?iTi,n
dqii
1nAdT si
dqi0
,in
i
1
T0,i
siT0,i
dqini
1 i
1dqi
dTo,nT0,n
T0,i
siTi,nT0
,n
1
1
1
??T1,2
(0)e ...Tn
1,n
(0)eT0,n
(q1,
q2
,
...
,
qn
)
T0,1
(0)e
log(T
d
T
1
)
log(T
d
T
1
)4
4dT T
1
(T
d
T )T
1
T
d
T
1
I0.n 0,n0.n 0,n0n 0,n 0.n 0,no,n 0,n 0.nAdT si
dqi0
,in
ilog(T nT n
)
d
1
0. 0,Inverse
Kinematics
Model
(A
numerical
solution
approach)The
purpose
ofinverse
kinematics
istodetermine
therequired
jointangles
withgivenend-effector
pose.s?1q1 s?2q2 s?n
qn
T
JdqInverse
Kinematics
Modeldq
(dq
,
dq
,...,
dq
)
n
1
1 2 ns
]
6
n
,
spatial
manipulator
Jacobian21
T
log(T
d
T
1
)
6
1,0.n
0,nAd s ... AdJ
[
Ad sT0,nT0,
2T0,1nThe
differential
kinematics
model
can
be
written
as:pose
difference
vector
viewed
at
thebase
framedifferential
changeof
the
joint
anglesRobot
Description
T(0),S
Given
Desired
Tool
Pose
TdIntial
GuessSolution
q0q
=
q +dqii-1iDerivation
of
dqdq
=J*.
log
(T T )i 0
,n
0
,n
1 di
=
1YesTerminateNo
<
6,7(0)es?6q6
T4,5 5,6(0)es?4q4
T (0)es?5q5
T3,4(0)es?3q3T2,3(0)es?2q2
T1,2(0)es?1q1T0,10,7T (q)
TInverse
Kinematics
Computation
ExamplezxyzBasexyJr1BaseLr1Lr1Lr1Lr1Lr1Lr2Lc2Jr1
Jr1Jr1Jr3
Jr223456701
Lc
2
0
Lr1
Lr
2
Lr1
Lr1
Lr1
r1
00
0
AIM
0 0(
z
,
y
) 0(
x
,
z
) (
z
,
y
)(
x
,
y
)
(
z
,
x
)
0 (
y,
x
)
0 0000L
1164.93
115.24
149.23
0.4571
0.4267
0.78030.8750
0.2286
0.426800.2286
0.58220.78030100,6T
dq=[0.7854,
0.7854,
0.7854,
0.7854,
0.7854,
0.7854
]07
(z
,
y)00000
(
x
,
y
)(
z
,
y
)00000000(
x
,
y
)(
z
,
y
)00000(
x
,
y
)J
r1J
r1J
r1J
r1J
r
2J
r
3Inverse
Kinematics
Computation
ExampleComparison
withthe
D-H
approachCasesContentsPOEMethodD-HMethod1Initial
Guess[0,0,
0,0,
0,0][0,0,
0,0,
0,0]Iterations617Times
(ms)2.25.98Solution[-.445,-.785,
2.356,
-.446,
.785,
.785][.525,
-.583,
2.375,
-.88,-.167,
.879]2Initial
Guess[0.2,
0.2,
0.2,
0.2.,
0.2,
0.2][0.2,
0.2,
0.2,
0.2.,
0.2,
0.2]Iterations1496Times
(ms)4.7236.85Solution[.525,
-.583,
2.375,
-.878,
-.167,
.879][.785,
-.446,
2.356,
-.785,
.-446,
.785]3Initial
Guess[0.4,
0.4,
0.4,
0.4.,
0.4,
0.4][0.4,
0.4,
0.4,
0.4.,
0.4,
0.4]Iterations540Times
(ms)1.8717.96Solution[.183,
.58,
.767,
.878,
1.416,
.878][-.446,-.785,
2.356,
-.446,
.785,
.785]4Initial
Guess[0.6,
0.6,
0.6,
0.6.,
0.6,
0.6][0.6,
0.6,
0.6,
0.6.,
0.6,
0.6]Iterations58Times
(ms)1.762.86Solution[.183,
.58,
.767,
.878,
1.416,
.878][.183,
.58,
.767,
.878,
1.416,
.878]5Initial
Guess[0.75,
0.75,
0.75,
0.75.,
0.75,
0.75][0.75,
0.75,
0.75,
0.75.,
0.75,
0.75]Iterations34Times
(ms)1.11.37Solution[.785,
.785,
.785,
.785,
.785,
.785][.785,
.785,
.785,
.785,
.785,
.785]6Initial
Guess[0.8,
0.8,
0.8,
0.8.,
0.8,
0.8][0.8,
0.8,
0.8,
0.8.,
0.8,
0.8]Iterations33Times
(ms)0.990.93Solution[.785,
.785,
.785,
.785,
.785,
.785][.785,
.785,
.785,
.785,
.785,
.785]Configuration-Independent
Dynamicsj*Link
jJoint
jNewton-Euler
Equation
for
aLink
AssemblyajFj
=(fj,
j)
6
6Configuration-Independent
DynamicsAfter
substitution,
wehavej*Joint
jjFj
=(fj,
j)Link
jNewton-Euler
Equation
expressed
in
Module
frame(j)Letthekinematictransformation
fromj*
toj
be
Tj*,J=(Rj*,j,
pj*,j),
then-1If,thenDynamics
of
a
Tree-structured
Modular
RobotRecursiveNewton-Euler
AlgorithmForward
Iteration:Initialization:Recursion:1234567zyxzyxzBranch
2Lc2Jp3Lp2Jr3Lr2Jf2Branch
1Lc2Jp3Lp2Jr3Lr2Jf2Lc1Jp1BaseyBasexLp1(a)
A
tree-structured
robot(b)the
kinematic
graphConfiguration-Independent
DynamicsBackward
Iteration:Initialization:
starting
fromall
pendent
linksRecursion:1234567zyxzyxzBranch
2Lc2Jp3Lp2Jr3Lr2Jf2Branch
1Lc2Jp3Lp2Jr3Lr2Jf2Lc1Jp1BaseyBasexLp1(a)
A
tree-structured
robot(b)the
kinematic
graphClosed
FormEquations
ofMotionExpanding
therecursiveequations,
matrix-form
equations
ofvelocities,
accelerations,
and
forces
canbe
given
by:generalizedClosed
Form
Equations
of
Motion.Lt\_
1
==
diag
[-ad咐1,一αd
s坤
f
-
v
一αd時(shí)機(jī)l
ER67zxh
;A
2
=
dmg
[-GdF1744γ.;
-adfn
] εWMn
;FE,==
COl1lmn[
P{
,P2,,F(xiàn)
] ζ
6nx
l
is
the
external
\\rrench
vectoI':HTo==EE,d
,dA
Aι9毛6nx6Ady礦16x
6 0TMAdTJ I6×60016x6H
==IT13Ad:ri"31r23AdT?31。。oIε
W6nx
6η..TIJdTFJThAdzuhnA
向L1
·咿
?
16x
6Not
e that 冗(G)=[r'i,]jε捉(n+取(葉1)is
the
aocessibility lnatrix oft
he
robot
's
kinenlatic
digraph
G.@
中國(guó)科學(xué)問(wèn)材料技術(shù)與工程研究所飛
中國(guó)科學(xué)院寧波工業(yè)技術(shù)研究院(籌〉Closed-form
Equations
of
MotionThe
closed
form
equations
of
motion
can
be
written
as:Computational
ComplexityImplementation
and
ExamplesInverse
DynamicsSolvingtheinversedynamics
problem
isnecessaryfor
robot
motionplanningandcontrolalgorithm
implementation.Once
arobot
trajectory
isspecified
interms
ofjointangles,velocities,
andaccelerations,
andtheexternal
forces
are
alsogiven,
the
inversedynamicscomputes
the
torques
to
be
applied
tothe
jointstoobtain
the
desired
motion.This
computationisalsouseful
for
verifying
thefeasibility
of
the
imposedtrajectory
andforcompensatingnonlinear
terms
inthe
dynamicmodel.The
computationofinversedynamics
becomes
quitestraightforward
once
thedynamicmodel
isderived.Implementation
and
ExamplesForward
DynamicsSolvingthe
forwarddynamics
problem
isnecessaryfor
the
robot
simulation.Forward
dynamicsallows
describing
the
motionof
therobot
system
interms
ofthe
joint
accelerations,
whenaset
ofassignedjoint
torques
isapplied
totherobot.The
jointvelocities
and
anglescanbe
obtained
byintegrating
the
system
ofnonlinear
differential
equations.The
closed-formequationsof
motionderived
form
the
proposed
algorithm
aremore
convenient
forthis
purpose
because
they
provide
the
explicit
relationshipbetween
thejointtorques
(aswell
as
the
external
forces),
angles,velocities,andaccelerations.Implementation
and
ExamplesAutomatic
dynamic
model
generalization(a)
A
tree-structuredrobot(b)
the
kinematic
graphBase1234567yxzyxzyxzJp1BaseBranch
2Lc2Jp3Lp2Jr3Lr2Jf2Branch
1Lc2Jp3Lp2Jr3Lr2Jf2Lc1Lp1Implementation
and
ExamplesAutomatic
dynamic
model
generalization(a)
A
tree-structuredrobot(b)
the
kinematic
graphBase1234567yxzyxzyxzJp1BaseBranch
2Lc2Jp3Lp2Jr3Lr2Jf2Branch
1Lc2Jp3Lp2Jr3Lr2Jf2Lc1Lp110,
thenAssumeForward
Dynamics
Example(a)
A
tree-structured
robot(b)the
kinematic
graphBase1234567yxzyxzyxzJp1Lp1
BaseBranch
2Lc2Jp3Lp2Jr3Lr2Jf2Branch
1Lc2Jp3Lp2Jr3Lr2Jf2Lc1Known
conditions:Implementation
and
ExamplesImplementation
and
ExamplesForward
Dynamics
Example0.80.60.40.20-0.2-0.4-0.6-0.80.20.40.60.811.21.4Joint
Acceleration
(1/s
2
or
m/s
2)Time
(second)Joint
5Joint
6,7Joint
1Joint
40.80.60.40.20-0.2-0.4-0.6-0.80.2 0.4 0.6 0.811.2 1.4Joi
nt
Veloci
ty
(rad/s
or
m/
s)Time
(second)Joint
5Joint
1Joint
6,7Joint
40.80.60.40.20-0.2-0.4-0.6-0.80.20.40.60.811.21.4Joint
Displacement
(
rad
orm)Time
(second)Joint
5Joint
4Joint
1Joint
6,7(a)
A
tree-structured
robot(b)the
kinematic
graphBase1234567yxzyxzyxzJp1BaseBranch
2Lc2Jp3Lp2Jr3Lr2Jf2Branch
1Lc2Jp3Lp2Jr3Lr2Jf2Lc1Lp1Implementation
and
ExamplesForward
Dynamics
Examplet
=
0t
=
0.3t
=
0.6t
=
0.9t
=
1.2t
=
1.5Modular
Robot
CalibrationThe
Need
forCalibrationKinematic
Calibration
--
an
effective
approachtoimprove
robot
accuracyAn
integrated
process
ofmodel
formulation,
pose
measurement,
parameter
identification,andcalibration
result
implementation.Modular
Robot
Calibration
--
Configuration-independent
ApproachMachining
toleranceAssemblyerrorsWear
anddriftDiscrepancyModular
RobotControllerActualParametersNominalParametersKinematic
Calibration
ModelForward
Kinematics
Tn,n
1
)(e
Ti
1,i
(0); eT0,n
1
e etn
1tn
1t1 ?s1q1 t2 ?s1q1titn snqne e ...e e e?????? ?Assumptions:–
Kinematicerrorsexist
only
in,,)
retain
theirnominal
values.Error
Model
—
A
linear
equation
with
respect
totn
1t2
...
Ad
t1
Ad
1T0
,n
1T0
,n
1?s2q2?t1 ?t2?s1q1e?t1
e?s1q1...e ee e e e?snqn?tn
?
?
?
?tiTi
,i
1
(0)
hence
inti
se
(3)
denoted
by
ti
;–
The
joint
axes
(
?si
)and
thejoint
angle
(qi??log(T0,n
1
T0,n
1
)Va
1=iT0
,in
i
1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030年軟飼料顆粒機(jī)項(xiàng)目投資價(jià)值分析報(bào)告
- 2025至2031年中國(guó)塑料六色凹版彩色印刷機(jī)行業(yè)投資前景及策略咨詢(xún)研究報(bào)告
- 2025至2030年筆型可視故障定位器項(xiàng)目投資價(jià)值分析報(bào)告
- 2025至2030年氣鏟除銹兩用機(jī)項(xiàng)目投資價(jià)值分析報(bào)告
- 節(jié)能建筑融資居間合同范例
- 船舶代理居間服務(wù)合同
- 2025年木材椅子定制合同
- 2025年人事外包管理合同
- 電力建設(shè)合同管理計(jì)劃
- 年產(chǎn)20套礦山設(shè)備項(xiàng)目可行性研究報(bào)告建議書(shū)
- 病歷書(shū)寫(xiě)規(guī)范細(xì)則(2024年版)
- 2024-2025學(xué)年人教版八年級(jí)上冊(cè)地理期末測(cè)試卷(二)(含答案)
- 雙方共同買(mǎi)車(chē)合同范例
- 醫(yī)務(wù)從業(yè)人員行為規(guī)范培訓(xùn)
- 中小學(xué)校食品安全管理現(xiàn)狀與膳食經(jīng)費(fèi)優(yōu)化方案
- 中醫(yī)外治法課件
- 第15屆-17屆全國(guó)中學(xué)生物理競(jìng)賽預(yù)賽試卷含答案
- 道路運(yùn)輸企業(yè)主要負(fù)責(zé)人和安全生產(chǎn)管理人員安全考核題(公共部分題+專(zhuān)業(yè)部分題)及答案
- 外研版小學(xué)英語(yǔ)(三起點(diǎn))六年級(jí)上冊(cè)期末測(cè)試題及答案(共3套)
- 月結(jié)合同模板
- 上海市黃浦區(qū)2024年數(shù)學(xué)六年級(jí)第一學(xué)期期末監(jiān)測(cè)試題含解析
評(píng)論
0/150
提交評(píng)論