濱州二模高三數(shù)學(xué)試卷_第1頁
濱州二模高三數(shù)學(xué)試卷_第2頁
濱州二模高三數(shù)學(xué)試卷_第3頁
濱州二模高三數(shù)學(xué)試卷_第4頁
濱州二模高三數(shù)學(xué)試卷_第5頁
已閱讀5頁,還剩9頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

濱州二模高三數(shù)學(xué)試卷一、選擇題

1.設(shè)函數(shù)\(f(x)=\frac{1}{x^2+1}\),則\(f(x)\)的定義域?yàn)椋?/p>

A.\((-\infty,\infty)\)

B.\((-\infty,-1)\cup(1,\infty)\)

C.\((-\infty,-1]\cup[1,\infty)\)

D.\((-\infty,-1]\cup[-1,0)\cup(0,1]\cup[1,\infty)\)

2.已知\(a,b\)是方程\(x^2-4x+4=0\)的根,則\(a^2+b^2\)的值為:

A.4

B.8

C.12

D.16

3.若\(\triangleABC\)的內(nèi)角\(A,B,C\)的對(duì)邊分別為\(a,b,c\),且\(a=3,b=4,c=5\),則\(\sinA+\sinB+\sinC\)的值為:

A.\(\frac{3}{2}\)

B.2

C.\(\frac{5}{2}\)

D.3

4.已知\(\log_23+\log_49=2\),則\(\log_227\)的值為:

A.3

B.4

C.5

D.6

5.若\(\tan\alpha=2\),則\(\sin\alpha\)的值為:

A.\(\frac{1}{\sqrt{5}}\)

B.\(\frac{2}{\sqrt{5}}\)

C.\(\frac{1}{\sqrt{3}}\)

D.\(\frac{2}{\sqrt{3}}\)

6.已知\(\lim_{x\to0}\frac{\sinx}{x}=1\),則\(\lim_{x\to0}\frac{\tanx}{x}\)的值為:

A.1

B.2

C.3

D.4

7.若\(f(x)=x^3-3x+2\),則\(f'(1)\)的值為:

A.-2

B.-1

C.1

D.2

8.已知\(\lim_{x\to0}\frac{\sinx-x}{x^3}=\frac{1}{6}\),則\(\lim_{x\to0}\frac{\cosx-1}{x^2}\)的值為:

A.\(-\frac{1}{2}\)

B.\(-\frac{1}{3}\)

C.\(\frac{1}{2}\)

D.\(\frac{1}{3}\)

9.設(shè)\(a,b\)是方程\(x^2-2x-3=0\)的根,則\(a+b\)的值為:

A.2

B.3

C.4

D.5

10.若\(\lim_{x\to0}\frac{\sinx}{\sin2x}=\frac{1}{2}\),則\(\lim_{x\to0}\frac{\cosx-1}{\cos2x-1}\)的值為:

A.1

B.\(\frac{1}{2}\)

C.\(\frac{1}{3}\)

D.\(\frac{1}{4}\)

二、判斷題

1.在直角坐標(biāo)系中,點(diǎn)\(P(2,3)\)關(guān)于\(y\)軸的對(duì)稱點(diǎn)為\(P'(-2,3)\)。()

2.二次函數(shù)\(y=ax^2+bx+c\)(\(a\neq0\))的圖象開口向上當(dāng)且僅當(dāng)\(a>0\)。()

3.在\(\triangleABC\)中,若\(a^2+b^2=c^2\),則\(\triangleABC\)為直角三角形。()

4.函數(shù)\(y=\sqrt{x}\)的定義域?yàn)閈(x\geq0\),其值域?yàn)閈(y\geq0\)。()

5.若\(\lim_{x\to0}\frac{\sinx}{x}=1\),則\(\lim_{x\to0}\frac{\cosx-1}{x^2}=-\frac{1}{2}\)。()

三、填空題

1.若函數(shù)\(f(x)=2x-3\)的反函數(shù)為\(f^{-1}(x)\),則\(f^{-1}(5)=\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\_\

四、簡(jiǎn)答題

1.簡(jiǎn)述三角函數(shù)的周期性質(zhì),并舉例說明如何利用周期性質(zhì)求解三角函數(shù)的值。

2.給定函數(shù)\(f(x)=x^3-6x+9\),求其導(dǎo)數(shù)\(f'(x)\)并分析函數(shù)的單調(diào)性。

3.若\(\triangleABC\)中,\(a=3,b=4,c=5\),求\(\cosA+\cosB+\cosC\)的值。

4.簡(jiǎn)化下列極限表達(dá)式,并求其值:\(\lim_{x\to\infty}\frac{\lnx}{x^2}\)。

5.已知\(\sin\alpha+\cos\alpha=\frac{\sqrt{2}}{2}\),求\(\sin2\alpha+\cos2\alpha\)的值。

五、計(jì)算題

1.計(jì)算定積分\(\int_0^1(2x^3-3x^2+x)\,dx\)。

2.解方程組\(\begin{cases}x+2y=5\\3x-y=4\end{cases}\)。

3.求函數(shù)\(f(x)=\frac{2x^2+3x-5}{x-1}\)的極值。

4.已知\(\sin^2\theta+\cos^2\theta=1\),求\(\tan\theta\)的值。

5.若\(\int_0^1f(x)\,dx=2\),其中\(zhòng)(f(x)=x^2-4x+5\),求\(\int_1^2f(x)\,dx\)。

六、案例分析題

1.案例分析題:某班級(jí)進(jìn)行數(shù)學(xué)競(jìng)賽,共有50名學(xué)生參加,其中獲得一等獎(jiǎng)的有8人,獲得二等獎(jiǎng)的有15人,獲得三等獎(jiǎng)的有18人,沒有獲得任何獎(jiǎng)項(xiàng)的有9人。請(qǐng)根據(jù)這些信息,使用集合的概念和公式計(jì)算:

-同時(shí)獲得一、二、三等獎(jiǎng)的學(xué)生人數(shù)。

-只獲得一項(xiàng)獎(jiǎng)項(xiàng)的學(xué)生人數(shù)。

2.案例分析題:某工廠生產(chǎn)一批產(chǎn)品,已知生產(chǎn)成本為每件100元,每件產(chǎn)品的售價(jià)為150元。根據(jù)市場(chǎng)需求,如果售價(jià)提高10%,則銷量減少20%。請(qǐng)計(jì)算:

-當(dāng)售價(jià)提高10%后,每件產(chǎn)品的利潤(rùn)是多少?

-原始利潤(rùn)與售價(jià)提高后的利潤(rùn)相比,利潤(rùn)率提高了多少?

七、應(yīng)用題

1.應(yīng)用題:某市計(jì)劃修建一條長(zhǎng)100公里的高速公路,已知每公里修建成本為500萬元。如果采用分段招標(biāo)的方式,將100公里分成10段,每段招標(biāo)的起始價(jià)相同,且每增加1公里,起始價(jià)增加10萬元。請(qǐng)問:

-如果每段招標(biāo)的起始價(jià)為多少萬元?

-總共可以籌集到多少資金用于修建高速公路?

2.應(yīng)用題:一個(gè)圓柱形容器的底面半徑為10厘米,高為20厘米。現(xiàn)在要將容器裝滿水,已知水的密度為1克/立方厘米。請(qǐng)問:

-容器最多可以裝多少克水?

-如果容器的側(cè)壁厚度為2厘米,那么實(shí)際裝水的體積與理論裝水的體積相比,差多少立方厘米?

3.應(yīng)用題:一個(gè)正方體的邊長(zhǎng)為a厘米,其體積為b立方厘米。如果將正方體的每個(gè)面都擴(kuò)大到原來的兩倍,請(qǐng)問:

-擴(kuò)大后的正方體的體積是多少立方厘米?

-擴(kuò)大后的正方體的表面積比原來的正方體的表面積增加了多少平方厘米?

4.應(yīng)用題:一個(gè)等腰三角形的底邊長(zhǎng)為8厘米,腰長(zhǎng)為10厘米。如果將三角形的底邊延長(zhǎng),使得新三角形的底邊長(zhǎng)為12厘米,腰長(zhǎng)仍為10厘米,請(qǐng)問:

-新三角形的面積與原三角形的面積之比是多少?

-如果在原三角形的基礎(chǔ)上,將腰長(zhǎng)延長(zhǎng)到12厘米,那么新三角形的周長(zhǎng)與原三角形的周長(zhǎng)之比是多少?

本專業(yè)課理論基礎(chǔ)試卷答案及知識(shí)點(diǎn)總結(jié)如下:

一、選擇題答案:

1.A

2.B

3.B

4.A

5.B

6.A

7.D

8.C

9.B

10.A

二、判斷題答案:

1.√

2.√

3.√

4.√

5.×

三、填空題答案:

1.1

2.-1

3.5

4.2

5.2

四、簡(jiǎn)答題答案:

1.三角函數(shù)的周期性質(zhì)是指對(duì)于所有的三角函數(shù)\(\sin(x)\)和\(\cos(x)\),以及它們的線性組合\(\sin(ax+b)\)和\(\cos(ax+b)\),都有\(zhòng)(\sin(x+T)=\sin(x)\)和\(\cos(x+T)=\cos(x)\),其中\(zhòng)(T\)是函數(shù)的周期。例如,正弦函數(shù)的周期是\(2\pi\),因此\(\sin(\pi+\frac{\pi}{2})=\sin(\frac{\pi}{2})\)。

2.函數(shù)\(f(x)=x^3-6x+9\)的導(dǎo)數(shù)為\(f'(x)=3x^2-6\)。函數(shù)的單調(diào)性可以通過導(dǎo)數(shù)的正負(fù)來判斷,當(dāng)\(f'(x)>0\)時(shí),函數(shù)遞增;當(dāng)\(f'(x)<0\)時(shí),函數(shù)遞減。

3.由于\(a^2+b^2=c^2\),根據(jù)勾股定理,\(\triangleABC\)為直角三角形,設(shè)直角在\(C\),則有\(zhòng)(\cosA+\cosB+\cosC=0\)。

4.極限\(\lim_{x\to\infty}\frac{\lnx}{x^2}\)可以通過洛必達(dá)法則求解,求導(dǎo)后得到\(\lim_{x\to\infty}\frac{\frac{1}{x}}{2x}=\lim_{x\to\infty}\frac{1}{2x^2}=0\)。

5.由于\(\sin\alpha+\cos\alpha=\frac{\sqrt{2}}{2}\),平方兩邊得\(\sin^2\alpha+2\sin\alpha\cos\alpha+\cos^2\alpha=\frac{1}{2}\),利用\(\sin^2\alpha+\cos^2\alpha=1\)得\(2\sin\alpha\cos\alpha=-\frac{1}{2}\),所

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論