《輻射源信號識別探究的國內外文獻綜述》4500字_第1頁
《輻射源信號識別探究的國內外文獻綜述》4500字_第2頁
《輻射源信號識別探究的國內外文獻綜述》4500字_第3頁
《輻射源信號識別探究的國內外文獻綜述》4500字_第4頁
《輻射源信號識別探究的國內外文獻綜述》4500字_第5頁
已閱讀5頁,還剩1頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

輻射源信號識別研究的國內外文獻綜述1輻射源個體識別研究現狀特定輻射源識別技術(SpecificEmitterIdentification,SEI)是由美國軍隊率先進行研究并確立相關概念,我國在該領域起步較晚,從20世紀80年代開始研究至今已有四十余年的發(fā)展與改進,總體框架已然確立,如REF_Ref50928055\h圖11所示,但技術細節(jié)仍在不斷發(fā)展。最開始雷達輻射源識別技術比較接近于傳統(tǒng)信號處理,如文獻ADDINEN.CITE<EndNote><Cite><Author>Cooper</Author><Year>2009</Year><RecNum>181</RecNum><DisplayText><styleface="superscript">[1]</style></DisplayText><record><rec-number>181</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1535596792">181</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Cooper,D.C.</author></authors></contributors><titles><title>ElectronicIntelligence:theAnalysisofRadarSignals</title><secondary-title>Electronics&Power</secondary-title></titles><periodical><full-title>Electronics&Power</full-title></periodical><pages>242</pages><volume>30</volume><number>3</number><dates><year>2009</year></dates><urls></urls></record></Cite></EndNote>[\o"Cooper,2009#181"1]對輻射源信號常規(guī)特征進行分析研究,較少了電子對抗偵察系統(tǒng)的組成;文獻ADDINEN.CITE<EndNote><Cite><Author>Hassan</Author><Year>2005</Year><RecNum>179</RecNum><DisplayText><styleface="superscript">[2]</style></DisplayText><record><rec-number>179</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1535592861">179</key></foreign-keys><ref-typename="ConferenceProceedings">10</ref-type><contributors><authors><author>S.A.Hassan</author><author>A.I.Bhatti</author><author>A.Latif</author></authors></contributors><titles><title>Emitterrecognitionusingfuzzyinferencesystem</title><secondary-title>ProceedingsoftheIEEESymposiumonEmergingTechnologies,2005.</secondary-title><alt-title>ProceedingsoftheIEEESymposiumonEmergingTechnologies,2005.</alt-title></titles><pages>204-208</pages><keywords><keyword>fuzzylogic</keyword><keyword>inferencemechanisms</keyword><keyword>patternrecognition</keyword><keyword>radarcomputing</keyword><keyword>radarsignalprocessing</keyword><keyword>emitterrecognition</keyword><keyword>fuzzyinferencesystem</keyword><keyword>radarsignals</keyword><keyword>atmosphericeffects</keyword><keyword>equipmentnoise</keyword><keyword>radarparametermeasurement</keyword><keyword>patternrecognitionproblem</keyword><keyword>multidimensionalspace</keyword><keyword>dataassociationtools</keyword><keyword>trainingdatarequirements</keyword><keyword>Fuzzysystems</keyword><keyword>Spaceborneradar</keyword><keyword>Marinevehicles</keyword><keyword>Aircraft</keyword><keyword>Dispersion</keyword><keyword>Atmosphericmeasurements</keyword><keyword>Radarmeasurements</keyword><keyword>Extraterrestrialmeasurements</keyword><keyword>Trainingdata</keyword></keywords><dates><year>2005</year><pub-dates><date>18-18Sept.2005</date></pub-dates></dates><urls></urls><electronic-resource-num>10.1109/ICET.2005.1558881</electronic-resource-num></record></Cite></EndNote>[\o"Hassan,2005#179"2]提出一類用于多維空間模式識別的模糊推理系統(tǒng),該系統(tǒng)可以有效提高輻射源個體識別技術;文獻ADDINEN.CITE<EndNote><Cite><Author>Zhang</Author><Year>2005</Year><RecNum>152</RecNum><DisplayText><styleface="superscript">[3]</style></DisplayText><record><rec-number>152</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1535552879">152</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>Zhang,Gexiang</author></authors></contributors><titles><title>ResemblanceCoefficientBasedFeatureSelectionAlgorithmforRadarEmitterSignalRecognition</title><secondary-title>SignalProcessing</secondary-title></titles><periodical><full-title>SignalProcessing</full-title></periodical><volume>21</volume><number>6</number><dates><year>2005</year></dates><urls></urls></record></Cite></EndNote>[\o"Zhang,2005#152"3]提出一種在特征選擇方法中進行改進,基于相似系數優(yōu)化特征提取過程;文獻ADDINEN.CITE<EndNote><Cite><Author>Xin</Author><Year>2006</Year><RecNum>180</RecNum><DisplayText><styleface="superscript">[4]</style></DisplayText><record><rec-number>180</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1535592890">180</key></foreign-keys><ref-typename="ConferenceProceedings">10</ref-type><contributors><authors><author>G.Xin</author><author>Y.Xiao</author><author>S.Yingfeng</author><author>H.You</author></authors></contributors><titles><title>ANewRadarEmitterRecognitionMethodBasedonVariablePrecisionRoughSetModel</title><secondary-title>2006CIEInternationalConferenceonRadar</secondary-title><alt-title>2006CIEInternationalConferenceonRadar</alt-title></titles><pages>1-4</pages><keywords><keyword>decisiontheory</keyword><keyword>radardetection</keyword><keyword>radarequipment</keyword><keyword>radartargetrecognition</keyword><keyword>roughsettheory</keyword><keyword>sensorfusion</keyword><keyword>radaremitterrecognitionmethod</keyword><keyword>variableprecisionroughsetmodel</keyword><keyword>radaremitterinformation</keyword><keyword>multisensorsystem</keyword><keyword>decisionrule</keyword><keyword>extractedindexdata</keyword><keyword>metricalradarcharacteristicparameter</keyword><keyword>Reconnaissance</keyword><keyword>Radarapplications</keyword><keyword>Intelligentsensors</keyword><keyword>Databases</keyword><keyword>Sun</keyword><keyword>Helium</keyword><keyword>Aerospaceengineering</keyword><keyword>Multisensorsystems</keyword><keyword>Uncertainty</keyword><keyword>radaremitterrecognition</keyword><keyword>decisionrules</keyword><keyword>variableprecisionroughset</keyword></keywords><dates><year>2006</year><pub-dates><date>16-19Oct.2006</date></pub-dates></dates><urls></urls><electronic-resource-num>10.1109/ICR.2006.343200</electronic-resource-num></record></Cite></EndNote>[\o"Xin,2006#180"4]利用基于模糊集決策模型改進輻射源分類器設計,有效提升了信號分類精度。傳統(tǒng)的輻射源識別大多只能分析信號差異較大的輻射源,目前研究深入之后可區(qū)分差異較小的設備,即特定輻射源識別(SEI),特定輻射源識別與傳統(tǒng)輻射源識別的過程大致相同,不過與傳統(tǒng)輻射源識別對輻射源常規(guī)特征進行提取識別不同,輻射源不同個體由于硬件老化以及非線性差異等原因,即使同一型號同一批次的設備,也會呈現細微的差距,SEI技術更傾向于對截獲的信號中無意調制特征進行提取,并與對應載體進行匹配識別。目前關于SEI的研究多從時頻分析、高階譜分析、變分模態(tài)分解等方法入手。在時頻分析方面,時頻分析技術通過對信號時頻分布的分析,獲得信號時頻關系,因此常作為信號無意調制特征提取的中間步驟。文獻ADDINEN.CITE<EndNote><Cite><Author>李天琪</Author><Year>2020</Year><RecNum>342</RecNum><DisplayText><styleface="superscript">[5]</style></DisplayText><record><rec-number>342</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1599725904">342</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>李天琪</author><author>張玉</author><author>張進</author><author>唐波</author></authors></contributors><auth-address>國防科技大學電子對抗學院;</auth-address><titles><title>基于時頻與快速熵的IFF輻射源個體識別方法</title><secondary-title>探測與控制學報</secondary-title></titles><periodical><full-title>探測與控制學報</full-title></periodical><pages>87-93+103</pages><volume>42</volume><number>01</number><keywords><keyword>敵我識別</keyword><keyword>輻射源個體識別</keyword><keyword>時頻分析</keyword><keyword>樣本熵</keyword></keywords><dates><year>2020</year></dates><isbn>1008-1194</isbn><call-num>61-1316/TJ</call-num><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[\o"李天琪,2020#342"5]提出一種基于時間尺度分解與快速熵的特定輻射源識別技術;文獻ADDINEN.CITE<EndNote><Cite><Author>張玉</Author><Year>2020</Year><RecNum>343</RecNum><DisplayText><styleface="superscript">[6]</style></DisplayText><record><rec-number>343</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1599726080">343</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>張玉</author><author>李天琪</author><author>張進</author><author>唐波</author></authors></contributors><auth-address>國防科技大學電子對抗學院;</auth-address><titles><title>基于集成固有時間尺度分解的IFF輻射源個體識別算法</title><secondary-title>電子與信息學報</secondary-title></titles><periodical><full-title>電子與信息學報</full-title></periodical><pages>430-437</pages><volume>42</volume><number>02</number><keywords><keyword>圖像處理</keyword><keyword>敵我識別</keyword><keyword>輻射源個體識別</keyword><keyword>時頻分析</keyword></keywords><dates><year>2020</year></dates><isbn>1009-5896</isbn><call-num>11-4494/TN</call-num><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[\o"張玉,2020#343"6]針對輻射源識別技術中信號無意調制特征比較細微的原理,將信號劃分為不同的模態(tài),對每個模態(tài)進行時頻圖分析其紋理特征,將圖像作為輸入信號;文獻ADDINEN.CITE<EndNote><Cite><Author>Chunyun</Author><Year>2010</Year><RecNum>155</RecNum><DisplayText><styleface="superscript">[7]</style></DisplayText><record><rec-number>155</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1535552955">155</key></foreign-keys><ref-typename="ConferenceProceedings">10</ref-type><contributors><authors><author>Chunyun,Song</author><author>Jianmin,Xu</author><author>Yi,Zhan</author></authors></contributors><titles><title>Amethodforspecificemitteridentificationbasedonempiricalmodedecomposition</title><secondary-title>2010IEEEInternationalConferenceonWirelessCommunications,NetworkingandInformationSecurity</secondary-title><alt-title>2010IEEEInternationalConferenceonWirelessCommunications,NetworkingandInformationSecurity</alt-title></titles><pages>54-57</pages><keywords><keyword>identification</keyword><keyword>signalprocessing</keyword><keyword>time-varyingnetworks</keyword><keyword>specificemitteridentification</keyword><keyword>empiricalmodedecomposition</keyword><keyword>radiosignals</keyword><keyword>radarsignals</keyword><keyword>nonlineartimeseries</keyword><keyword>timedomain</keyword><keyword>Waveletdistribution</keyword><keyword>Wigner-Villedistribution</keyword><keyword>Timedomainanalysis</keyword><keyword>Frequencyestimation</keyword><keyword>Waveletanalysis</keyword><keyword>Radiotransmitters</keyword><keyword>Biomedicalmeasurements</keyword><keyword>Radar</keyword><keyword>Spectralanalysis</keyword><keyword>Timeseriesanalysis</keyword><keyword>Parameterestimation</keyword><keyword>transients</keyword><keyword>non-stationary</keyword></keywords><dates><year>2010</year><pub-dates><date>25-27June2010</date></pub-dates></dates><urls></urls><electronic-resource-num>10.1109/WCINS.2010.5541885</electronic-resource-num></record></Cite></EndNote>[\o"Chunyun,2010#155"7]結合經驗模態(tài)分解技術,對輻射源信號進行模態(tài)分解而后對子模態(tài)進行時頻估計;文獻ADDINEN.CITE<EndNote><Cite><Author>Zhang</Author><Year>2016</Year><RecNum>159</RecNum><DisplayText><styleface="superscript">[8]</style></DisplayText><record><rec-number>159</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1535553041">159</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>J.Zhang</author><author>F.Wang</author><author>O.A.Dobre</author><author>Z.Zhong</author></authors></contributors><titles><title>SpecificEmitterIdentificationviaHilbert–HuangTransforminSingle-HopandRelayingScenarios</title><secondary-title>IEEETransactionsonInformationForensicsandSecurity</secondary-title></titles><periodical><full-title>IEEETransactionsonInformationForensicsandSecurity</full-title></periodical><pages>1192-1205</pages><volume>11</volume><number>6</number><keywords><keyword>Hilberttransforms</keyword><keyword>poweramplifiers</keyword><keyword>signalprocessing</keyword><keyword>specificemitteridentification</keyword><keyword>Hilbert-Huangtransform</keyword><keyword>relayingscenarios</keyword><keyword>single-hopscenarios</keyword><keyword>SEIproblem</keyword><keyword>Hilbertspectrum</keyword><keyword>identificationfeature</keyword><keyword>Fisher'sdiscriminantratio</keyword><keyword>additivewhiteGaussiannoise</keyword><keyword>relayfingerprints</keyword><keyword>Featureextraction</keyword><keyword>Time-frequencyanalysis</keyword><keyword>Transforms</keyword><keyword>Supportvectormachines</keyword><keyword>Transientanalysis</keyword><keyword>Relays</keyword><keyword>Steady-state</keyword><keyword>Relay</keyword><keyword>Specificemitteridentification(SEI)</keyword></keywords><dates><year>2016</year></dates><isbn>1556-6013</isbn><urls></urls><electronic-resource-num>10.1109/TIFS.2016.2520908</electronic-resource-num></record></Cite></EndNote>[\o"Zhang,2016#159"8]提出了基于HHT變換的輻射源時頻分布特征提取算法,對信號的能量熵和高階矩等特征進行了提取,實驗表明分類效果得到有效。高階統(tǒng)計分析方向:高階統(tǒng)計量主要指利用輻射源信號高階譜分析技術,對從時域和頻域的角度出發(fā),從信號的高階矩譜、功率譜、高階累積量譜進行統(tǒng)計分析,目前在SEI領域中常使用的為高階累積量譜,也稱為高階譜分析。與傳統(tǒng)的信號功率譜分析不同,高階譜能夠從聯(lián)合分析信號幅度和相位,而且因為信道中白噪聲的經高階譜變換后累計量為零,因此可以有效的濾除信道噪聲對信號的影響,因此對于非線性非平穩(wěn)非高斯信號具有較大優(yōu)勢??紤]到運算量和效率等問題,實際中常用信號3階高階譜,也被稱為雙譜。文獻ADDINEN.CITE<EndNote><Cite><Author>王占領</Author><Year>2014</Year><RecNum>52</RecNum><DisplayText><styleface="superscript">[9]</style></DisplayText><record><rec-number>52</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1489633756">52</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>王占領</author><author>張登福</author><author>王世強</author></authors></contributors><auth-address>空軍工程大學航空航天工程學院;93986部隊;</auth-address><titles><title>雷達輻射源信號雙譜二次特征提取方法</title><secondary-title>空軍工程大學學報(自然科學版)</secondary-title></titles><periodical><full-title>空軍工程大學學報(自然科學版)</full-title></periodical><pages>48-52</pages><volume>15</volume><number>01</number><keywords><keyword>高階譜分析</keyword><keyword>雙譜</keyword><keyword>雷達輻射源信號</keyword><keyword>特征提取</keyword><keyword>灰度共生矩陣</keyword></keywords><dates><year>2014</year></dates><isbn>1009-3516</isbn><call-num>61-1338/N</call-num><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[\o"王占領,2014#52"9]提出一種利用信號灰度共生矩陣的輻射源識別方法;文獻ADDINEN.CITE<EndNote><Cite><Author>Yao</Author><Year>2020</Year><RecNum>368</RecNum><DisplayText><styleface="superscript">[10]</style></DisplayText><record><rec-number>368</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1622555843">368</key></foreign-keys><ref-typename="ConferenceProceedings">10</ref-type><contributors><authors><author>Y.Yao</author><author>L.Yu</author><author>Y.Chen</author></authors></contributors><titles><title>SpecificEmitterIdentificationBasedonSquareIntegralBispectrumFeatures</title><secondary-title>2020IEEE20thInternationalConferenceonCommunicationTechnology(ICCT)</secondary-title><alt-title>2020IEEE20thInternationalConferenceonCommunicationTechnology(ICCT)</alt-title></titles><pages>1311-1314</pages><dates><year>2020</year><pub-dates><date>28-31Oct.2020</date></pub-dates></dates><isbn>2576-7828</isbn><urls></urls><electronic-resource-num>10.1109/ICCT50939.2020.9295681</electronic-resource-num></record></Cite></EndNote>[\o"Yao,2020#368"10]在研究信號時頻分析基礎上,提出一種基于平方積分雙譜特征方法,有效降低信號特征維度提取計算量;文獻ADDINEN.CITE<EndNote><Cite><Author>Ekramul</Author><Year>2014</Year><RecNum>370</RecNum><DisplayText><styleface="superscript">[11]</style></DisplayText><record><rec-number>370</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1622595766">370</key></foreign-keys><ref-typename="ConferenceProceedings">10</ref-type><contributors><authors><author>M.H.Ekramul</author><author>W.A.Jassim</author><author>M.S.A.Zilany</author></authors></contributors><titles><title>Effectsofnoiseonthefeaturesofbispectrum</title><secondary-title>2014IEEE19thInternationalFunctionalElectricalStimulationSocietyAnnualConference(IFESS)</secondary-title><alt-title>2014IEEE19thInternationalFunctionalElectricalStimulationSocietyAnnualConference(IFESS)</alt-title></titles><pages>1-4</pages><dates><year>2014</year><pub-dates><date>17-19Sept.2014</date></pub-dates></dates><urls></urls><electronic-resource-num>10.1109/IFESS.2014.7036758</electronic-resource-num></record></Cite></EndNote>[\o"Ekramul,2014#370"11]提出利用高階頻譜(HOS)分析研究噪聲對雙譜統(tǒng)計特征的影響,檢測信號線性、平穩(wěn)性偏差;文獻ADDINEN.CITE<EndNote><Cite><Author>Mei</Author><Year>2012</Year><RecNum>371</RecNum><DisplayText><styleface="superscript">[12]</style></DisplayText><record><rec-number>371</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1622596027">371</key></foreign-keys><ref-typename="ConferenceProceedings">10</ref-type><contributors><authors><author>J.Mei</author><author>L.Qiao</author><author>Y.Xiao</author></authors></contributors><titles><title>Weakfaultfeatureextractionofgearbox'sbearingbasedonEMD-bispectrum</title><secondary-title>20129thInternationalConferenceonFuzzySystemsandKnowledgeDiscovery</secondary-title><alt-title>20129thInternationalConferenceonFuzzySystemsandKnowledgeDiscovery</alt-title></titles><pages>1439-1443</pages><dates><year>2012</year><pub-dates><date>29-31May2012</date></pub-dates></dates><urls></urls><electronic-resource-num>10.1109/FSKD.2012.6233990</electronic-resource-num></record></Cite></EndNote>[\o"Mei,2012#371"12]提出了一種EMD-雙譜方法,將振動信號分解為一系列模態(tài),消除交叉分量有效的降低噪聲影響;文獻ADDINEN.CITE<EndNote><Cite><Author>Lin</Author><Year>2020</Year><RecNum>369</RecNum><DisplayText><styleface="superscript">[13]</style></DisplayText><record><rec-number>369</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1622556401">369</key></foreign-keys><ref-typename="ConferenceProceedings">10</ref-type><contributors><authors><author>Y.Lin</author><author>J.Jia</author><author>S.Wang</author><author>B.Ge</author><author>S.Mao</author></authors></contributors><titles><title>WirelessDeviceIdentificationBasedonRadioFrequencyFingerprintFeatures</title><secondary-title>ICC2020-2020IEEEInternationalConferenceonCommunications(ICC)</secondary-title><alt-title>ICC2020-2020IEEEInternationalConferenceonCommunications(ICC)</alt-title></titles><pages>1-6</pages><dates><year>2020</year><pub-dates><date>7-11June2020</date></pub-dates></dates><isbn>1938-1883</isbn><urls></urls><electronic-resource-num>10.1109/ICC40277.2020.9149226</electronic-resource-num></record></Cite></EndNote>[\o"Lin,2020#369"13]研究輻射源信號穩(wěn)態(tài)特征與暫態(tài)特征差異后,基于功率譜密度和分數階傅里葉變換的基礎上對雙譜分析方法進行改進,提高了基于穩(wěn)態(tài)特征的輻射源分類精度;文獻ADDINEN.CITE<EndNote><Cite><Author>Kang</Author><Year>2016</Year><RecNum>143</RecNum><DisplayText><styleface="superscript">[14]</style></DisplayText><record><rec-number>143</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1535507437">143</key></foreign-keys><ref-typename="ConferenceProceedings">10</ref-type><contributors><authors><author>N.Kang</author><author>M.He</author><author>J.Han</author><author>B.Wang</author></authors></contributors><titles><title>RadaremitterfingerprintrecognitionbasedonbispectrumandSURFfeature</title><secondary-title>2016CIEInternationalConferenceonRadar(RADAR)</secondary-title><alt-title>2016CIEInternationalConferenceonRadar(RADAR)</alt-title></titles><pages>1-5</pages><keywords><keyword>electronicwarfare</keyword><keyword>featureextraction</keyword><keyword>fingerprintidentification</keyword><keyword>militaryradar</keyword><keyword>radarsignalprocessing</keyword><keyword>bispectrumtheory</keyword><keyword>SURFfeature</keyword><keyword>bispectrumprojection</keyword><keyword>radaremitterfingerprintrecognition</keyword><keyword>radaremitteridentification</keyword><keyword>radarsignals</keyword><keyword>Radar</keyword><keyword>Fingerprintrecognition</keyword><keyword>Gaussiannoise</keyword><keyword>Spectrogram</keyword><keyword>Transforms</keyword><keyword>Time-frequencyanalysis</keyword><keyword>bispectrum</keyword></keywords><dates><year>2016</year><pub-dates><date>10-13Oct.2016</date></pub-dates></dates><urls></urls><electronic-resource-num>10.1109/RADAR.2016.8059588</electronic-resource-num></record></Cite></EndNote>[\o"Kang,2016#143"14]利用投影灰度圖,將圖像作為輻射源信號的表征方法,對信號進行分類識別;文獻ADDINEN.CITE<EndNote><Cite><Author>王書豪</Author><Year>2019</Year><RecNum>367</RecNum><DisplayText><styleface="superscript">[15]</style></DisplayText><record><rec-number>367</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1622555339">367</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>王書豪</author><author>阮懷林</author></authors></contributors><auth-address>國防科技大學電子對抗學院;</auth-address><titles><title>基于切片雙譜多重分形特征的雷達信號識別算法</title><secondary-title>探測與控制學報</secondary-title></titles><periodical><full-title>探測與控制學報</full-title></periodical><pages>66-70</pages><volume>41</volume><number>05</number><keywords><keyword>切片雙譜</keyword><keyword>多重分形</keyword><keyword>廣義維數</keyword><keyword>支持向量機</keyword></keywords><dates><year>2019</year></dates><isbn>1008-1194</isbn><call-num>61-1316/TJ</call-num><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[\o"王書豪,2019#367"15]針對現有算法對噪聲敏感,提出基于信號廣義維數和多重分形譜特征的輻射源識別方法。變分模態(tài)分解(VariationalModeDecomposition,VMD)ADDINEN.CITE<EndNote><Cite><Author>Dragomiretskiy</Author><Year>2014</Year><RecNum>328</RecNum><DisplayText><styleface="superscript">[16]</style></DisplayText><record><rec-number>328</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1598002548">328</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>K.Dragomiretskiy</author><author>D.Zosso</author></authors></contributors><titles><title>VariationalModeDecomposition</title><secondary-title>IEEETransactionsonSignalProcessing</secondary-title></titles><periodical><full-title>IEEETransactionsonSignalProcessing</full-title></periodical><pages>531-544</pages><volume>62</volume><number>3</number><keywords><keyword>signaldenoising</keyword><keyword>Wienerfilters</keyword><keyword>variationalmodedecomposition</keyword><keyword>empiricalmodedecomposition</keyword><keyword>EMD</keyword><keyword>decompositionproblem</keyword><keyword>synchrosqueezing</keyword><keyword>empiricalwavelets</keyword><keyword>recursivevariationaldecomposition</keyword><keyword>nonrecursivevariationalmode</keyword><keyword>Fourierdomain</keyword><keyword>narrow-bandprior</keyword><keyword>Wienerfilterdenoising</keyword><keyword>Frequencyestimation</keyword><keyword>Frequencymodulation</keyword><keyword>Bandwidth</keyword><keyword>Noise</keyword><keyword>Robustness</keyword><keyword>Wavelettransforms</keyword><keyword>AM-FM</keyword><keyword>augmentedLagrangian</keyword><keyword>Fouriertransform</keyword><keyword>Hilberttransform</keyword><keyword>modedecomposition</keyword><keyword>spectraldecomposition</keyword><keyword>variationalproblem</keyword><keyword>Wienerfilter</keyword></keywords><dates><year>2014</year></dates><isbn>1941-0476</isbn><urls></urls><electronic-resource-num>10.1109/TSP.2013.2288675</electronic-resource-num></record></Cite></EndNote>[\o"Dragomiretskiy,2014#328"16]是學者在EMD的研究基礎上提出的自適應時頻分析分析方法。與EMD分解的結果不同,VMD通過引入拉格朗日函數的方法,將信號分解為多個窄幅子模態(tài)。文獻ADDINEN.CITEADDINEN.CITE.DATA[\o"Gok,2020#305"17]針對輻射源識別提出一種利用脈沖到達時間處理,通過VMD對信號分解后將包絡以及相位信息送分類器進行識別分析一;文獻ADDINEN.CITE<EndNote><Cite><Author>He</Author><Year>2020</Year><RecNum>303</RecNum><DisplayText><styleface="superscript">[18]</style></DisplayText><record><rec-number>303</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1597213276">303</key></foreign-keys><ref-typename="JournalArticle">17</ref-type><contributors><authors><author>B.He</author><author>F.Wang</author></authors></contributors><titles><title>CooperativeSpecificEmitterIdentificationviaMultipleDistortedReceivers</title><secondary-title>IEEETransactionsonInformationForensicsandSecurity</secondary-title></titles><periodical><full-title>IEEETransactionsonInformationForensicsandSecurity</full-title></periodical><pages>3791-3806</pages><volume>15</volume><keywords><keyword>Receivers</keyword><keyword>Featureextraction</keyword><keyword>Distortion</keyword><keyword>Radiotransmitters</keyword><keyword>Transientanalysis</keyword><keyword>Time-frequencyanalysis</keyword><keyword>Transforms</keyword><keyword>Empiricalmodedecomposition(EMD)</keyword><keyword>intrinsictime-scaledecomposition(ITD)</keyword><keyword>receiverdistortion</keyword><keyword>specificemitteridentification</keyword><keyword>variationalmodedecomposition(VMD)</keyword></keywords><dates><year>2020</year></dates><isbn>1556-6021</isbn><urls></urls><electronic-resource-num>10.1109/TIFS.2020.3001721</electronic-resource-num></record></Cite></EndNote>[\o"He,2020#303"18]提出基于信號分解的分別基于內在時間尺度分解(ITD)和變分模式分解(VMD)的兩種方案,并利用支持向量機進行分類識別,實現了在衰落信道多接收機協(xié)作的特定輻射源識別;文獻ADDINEN.CITE<EndNote><Cite><Author>王振威</Author><Year>2015</Year><RecNum>340</RecNum><DisplayText><styleface="superscript">[19]</style></DisplayText><record><rec-number>340</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1599724745">340</key></foreign-keys><ref-typename="Thesis">32</ref-type><contributors><authors><author>王振威</author></authors><tertiary-authors><author>姜萬錄,</author></tertiary-authors></contributors><titles><title>基于變分模態(tài)分解的故障診斷方法研究</title></titles><keywords><keyword>機械設備</keyword><keyword>故障識別</keyword><keyword>混沌粒子群</keyword><keyword>變分模態(tài)分解</keyword><keyword>特征提取</keyword><keyword>核模糊C均值聚類</keyword></keywords><dates><year>2015</year></dates><publisher>燕山大學</publisher><work-type>碩士</work-type><urls></urls><remote-database-provider>Cnki</remote-database-provider></record></Cite></EndNote>[\o"王振威,2015#340"19]提出一種基于混沌粒子群理論的VMD改進算法,選取各個子模態(tài)包絡為基準,確定分解參數最佳組合;文獻ADDINEN.CITE<EndNote><Cite><Author>Biswal</Author><Year>2019</Year><RecNum>372</RecNum><DisplayText><styleface="superscript">[20]</style></DisplayText><record><rec-number>372</rec-number><foreign-keys><keyapp="EN"db-id="r5trxtety5vvprefwdqv9sar5azr2vewp9r5"timestamp="1622596219">372</key></foreign-keys><ref-typename="ConferenceProceedings">10</ref-type><contributors><authors><author>G.Biswal</author><author>A.B.Kambhampati</author><author>B.Ramkumar</author><author>M.S.Manikandan</author></authors></contributors><titles><title>SpecificEmitterIdentificationOverFadingChannels</title><secondary-title>2019InternationalConferenceonRangeTechnology(ICORT)</secondary-title><alt-title>2019InternationalConferenceonRangeTechnology(ICORT)</alt-title></titles><pages>1-5</pages><dates><year>2019</year><pub-dates><date>15-17Feb.2019</date></pub-dates></dates><urls></urls><electronic-resource-num>10.1109/ICORT46471.2019.9069647</electronic-resource-num></record></Cite></EndNote>[\o"Biswal,2019#372"20]通過研究特定輻射源非線性特性,對衰落信道上信號的VMD能量熵、一階矩和相關系數等特征進行了提??;文獻ADDINEN.CITE<EndNote><Cite><Author>Gok</Author><Year>2017</Year><RecNum>373</RecNum><DisplayText><styleface="superscript">[21]</style></DisplayText><record><rec-number>373</rec-number><foreign-keys

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論