美國軟件公司技術(shù)面試題及答案(基本算法類)_第1頁
美國軟件公司技術(shù)面試題及答案(基本算法類)_第2頁
美國軟件公司技術(shù)面試題及答案(基本算法類)_第3頁
美國軟件公司技術(shù)面試題及答案(基本算法類)_第4頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

(15Points)A.Canyougiveanexampleofaheapwithsevendistinctelementssuchthatapre-ordertraversaloftheheapyieldstheelementsinsortedorder?Ifnotwhy?

Answer:

1

2 5

3 467

B.Canyougiveanexampleofaheapwithsevendistinctelementssuchthatanin-ordertraversaloftheheapyieldstheelementsinsortedorder?Ifnotwhy?

Answer:

No.Inain-ordertraversalofatreerootedatnodev,theresultisv.leftChildren(maybeasub-tree),v,v.rightChildren(maybeasub-tree).Ifthetreeisaheap,becauseofHeap-OrderProperty,thereexistsomekey(s)inv.leftChildrengreaterthanthekeyofv,andthesituationisthesamewithv.rightChildren,sotheresultcannotbeinsortedorder.

C.Canyougiveanexampleofaheapwithsevendistinctelementssuchthatapost-ordertraversaloftheheapyieldstheelementsinsortedorder?Ifnotwhy?

Answer:

1

5 2

7 643

(15Points)ConsiderannbynmatrixMwhoseelementsare0’sand1’ssuchthatinanyrow,allthe1’scomebeforeany0’sinthatrow.AssumingAisalreadyinmemory,describeanalgorithmrunninginO(n)timeforfindingtherowofMthatcontainthemostof1’s.

Answer:

AlgorithmfindMaxRow()

i<-0

j<-0

maxCount<-0

maxRow<-0

whilei<n

whileM[i][j]=1

j<-j+1

if(j=n)

returni

ifj>maxCount

maxCount<-j

maxRow<-i

i<-i+1

returnmaxRow

(15Points)ConsiderthesamematrixMinquestion2.DescribeanalgorithmrunninginO(nlogn)forcountingthenumberof1’sinM.

Answer:

Algorithmcount()

i<-0

j<-0

s<-0

whilei<n

whileM[i][j]=1

j<-j+1

whileM[i][j-1]=0

j<-j-1

s<-s+j

returns

Notquite.Youshoulduseabinarysearchoneachrowtofindthelocationoftherightmost1.

(15Points)Wearegiventwon-elementsortedsequencesAandBthatshouldnotbeviewedassets(thatis,AandBmaycontainduplicateelements).DescribeanO(n)methodforcomputingasequencerepresentingthesetAUB(withnoduplicateelements).

Answer:

Assumethattheyaresortedinnon-decreasingorder.

Algorithmunion(A,B,S)

Input:sequenceAandBsortedinnon-decreasingorder,andenemptysequenceS

Output:S,AUB

S.insertLast(min{A.first().element(),B.first().element()})

while(not(A.isEmpty()orB.isEmpty()))

ifA.first().element()<=B.first().element()

ifS.last().element()=A.first().element()

A.remove(A.first())

else

S.insertLast(A.remove(A.first()))

else

ifS.last().element()=B.first().element()

B.remove(B.first())

else

S.insertLast(B.remove(B.first()))

while(notA.isEmpty())

ifS.last().element()=A.first().element()

A.remove(A.first())

else

S.insertLast(A.remove(A.first()))

while(notB.isEmpty())

ifS.last().element()=B.first().element()

B.remove(B.first())

else

S.insertLast(B.remove(B.first()))

(10Points)YouarebeinginterviewedtobehiredasacashierinaDollarStore.TheManagerasksyoutodevelopanefficientgreedyalgorithmformakingchangeforaspecifiedvalueundera$1usingaminimumnumberofcoinsofquarters,dimes,nickels,andpennies.Describeyouralgorithm.Youwillnotbehiredifyouralgorithmisnotgreedy!

Answer:

Algorithm

Input:x,theamountofmoneyintermsofcent

Output:Q,D,N,P------numberofeachunity

Q,D,N,P<-0

while(x>=25)

Q<-Q+1

x<-x-25

while(x>=10)

D<-D+1

x<-x-10

while(x>=5)

N<-N+1

x<-x-5

while(x>=1)

P<-P+1

x<-x-1

(15Points)Giventhestoryinquestion5,ifthedenominationswerenot$0.25,$0.10,$.05,and$0.01(butsomeotherdenominations),doyouthinkyourgreedyalgorithmstillworks?JustifyyouranswerwithsolidargumentsorexamplestobequalifiedforajobatUSTreasury.

Answer:

Yes,Ithinkso.

IftherearedenominationsofD0,D1,...,Dn,andthatD0<D1<...<Dn,D0mustbeafactorofx,namelyxmodD0=0.

SupposeweexpresstheamountofmoneyxinonlyD0,thentotalnumberisCount(D0)+Count(D1)+...+Count(Dn)=x/D0+0+...+0.

IfwetransfertheexpressionfromD0to(D0andDk)(k>0),thetotalnumberwilldecreasetox/Dk+y(y=(xmodDk)/D0).So,thefirstpartx/DkisdecreasingwithDkincreasing,whilethesecondpartyisasub-problemoftheoriginalproblemandwecansolveitwiththesameprinciple.

No,thisisincorrect.Imagineyouhadcoinswithdenominations1c,9c,10candhadtomakechangefor18c,thenthegreedyalgorithmwouldmakechangewitha10cand81ccoins,whilethebestsolutionis29ccoins.

(15Points)Designadivide-and-conqueralgorithmforfindingtheminimumandmaximumelementsofnnumbersusingnomorethan3n/2comparisons.

Answer:

pickarandomelementTargetrandomlyfromtheset

dividetheremainingelementsintotwosets

G:elementsthatgreaterthanTarget

S:elementsthatsmallerthanTarget

(throwawayelementsthatequaltoTarget)

ifGisNULL

Targetisthemaximumelement

ifSisNULL

Targetistheminimumelement

ifGisnotNULL

recursivelydo

pickarandomelementTargetfromtheremainingelements

throwawayelementsthatsmallerthanorequaltoTarget

isSisnotNULL

recursivelydo

pickarandomelementTargetfromtheremainingelements

throwawayelementsthatgreaterthanorequaltoTarget

Fromthesolutions,

Dividethesetofnnumbersn/2groupsoftwoele

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論