




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
廣東省茂名地區(qū)2022-2023學年高三“六校聯(lián)盟”第三次聯(lián)考數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.運行如圖所示的程序框圖,若輸出的值為300,則判斷框中可以填()A. B. C. D.2.直角坐標系中,雙曲線()與拋物線相交于、兩點,若△是等邊三角形,則該雙曲線的離心率()A. B. C. D.3.若函數在處有極值,則在區(qū)間上的最大值為()A. B.2 C.1 D.34.已知直線:與圓:交于,兩點,與平行的直線與圓交于,兩點,且與的面積相等,給出下列直線:①,②,③,④.其中滿足條件的所有直線的編號有()A.①② B.①④ C.②③ D.①②④5.已知函數,若曲線在點處的切線方程為,則實數的取值為()A.-2 B.-1 C.1 D.26.若復數滿足,復數的共軛復數是,則()A.1 B.0 C. D.7.已知復數滿足:,則的共軛復數為()A. B. C. D.8.展開項中的常數項為A.1 B.11 C.-19 D.519.已知圓錐的高為3,底面半徑為,若該圓錐的頂點與底面的圓周都在同一個球面上,則這個球的體積與圓錐的體積的比值為()A. B. C. D.10.已知等差數列的前13項和為52,則()A.256 B.-256 C.32 D.-3211.過直線上一點作圓的兩條切線,,,為切點,當直線,關于直線對稱時,()A. B. C. D.12.已知正項等比數列的前項和為,且,則公比的值為()A. B.或 C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,則不等式的解集為____________.14.如圖所示,直角坐標系中網格小正方形的邊長為1,若向量、、滿足,則實數的值為_______.15.正項等比數列|滿足,且成等差數列,則取得最小值時的值為_____16.平面直角坐標系中,O為坐標原點,己知A(3,1),B(-1,3),若點C滿足,其中α,β∈R,且α+β=1,則點C的軌跡方程為三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在斜三棱柱中,平面平面,,,,均為正三角形,E為AB的中點.(Ⅰ)證明:平面;(Ⅱ)求斜三棱柱截去三棱錐后剩余部分的體積.18.(12分)某工廠生產一種產品的標準長度為,只要誤差的絕對值不超過就認為合格,工廠質檢部抽檢了某批次產品1000件,檢測其長度,繪制條形統(tǒng)計圖如圖:(1)估計該批次產品長度誤差絕對值的數學期望;(2)如果視該批次產品樣本的頻率為總體的概率,要求從工廠生產的產品中隨機抽取2件,假設其中至少有1件是標準長度產品的概率不小于0.8時,該設備符合生產要求.現(xiàn)有設備是否符合此要求?若不符合此要求,求出符合要求時,生產一件產品為標準長度的概率的最小值.19.(12分)a,b,c分別為△ABC內角A,B,C的對邊.已知a=3,,且B=60°.(1)求△ABC的面積;(2)若D,E是BC邊上的三等分點,求.20.(12分)已知橢圓的離心率為,且以原點O為圓心,橢圓C的長半軸長為半徑的圓與直線相切.(1)求橢圓的標準方程;(2)已知動直線l過右焦點F,且與橢圓C交于A、B兩點,已知Q點坐標為,求的值.21.(12分)如圖,在平面直角坐標系xOy中,已知橢圓C:(a>b>0)的離心率為.且經過點(1,),A,B分別為橢圓C的左、右頂點,過左焦點F的直線l交橢圓C于D,E兩點(其中D在x軸上方).(1)求橢圓C的標準方程;(2)若△AEF與△BDF的面積之比為1:7,求直線l的方程.22.(10分)如圖,在四棱錐中,底面為矩形,側面底面,為棱的中點,為棱上任意一點,且不與點、點重合..(1)求證:平面平面;(2)是否存在點使得平面與平面所成的角的余弦值為?若存在,求出點的位置;若不存在,請說明理由.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
由,則輸出為300,即可得出判斷框的答案【詳解】由,則輸出的值為300,,故判斷框中應填?故選:.【點睛】本題考查了程序框圖的應用問題,解題時應模擬程序框圖的運行過程,以便得出正確的結論,是基礎題.2.D【解析】
根據題干得到點A坐標為,代入拋物線得到坐標為,再將點代入雙曲線得到離心率.【詳解】因為三角形OAB是等邊三角形,設直線OA為,設點A坐標為,代入拋物線得到x=2b,故點A的坐標為,代入雙曲線得到故答案為:D.【點睛】求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據一個條件得到關于的齊次式,結合轉化為的齊次式,然后等式(不等式)兩邊分別除以或轉化為關于的方程(不等式),解方程(不等式)即可得(的取值范圍).3.B【解析】
根據極值點處的導數為零先求出的值,然后再按照求函數在連續(xù)的閉區(qū)間上最值的求法計算即可.【詳解】解:由已知得,,,經檢驗滿足題意.,.由得;由得或.所以函數在上遞增,在上遞減,在上遞增.則,,由于,所以在區(qū)間上的最大值為2.故選:B.【點睛】本題考查了導數極值的性質以及利用導數求函數在連續(xù)的閉區(qū)間上的最值問題的基本思路,屬于中檔題.4.D【解析】
求出圓心到直線的距離為:,得出,根據條件得出到直線的距離或時滿足條件,即可得出答案.【詳解】解:由已知可得:圓:的圓心為(0,0),半徑為2,則圓心到直線的距離為:,∴,而,與的面積相等,∴或,即到直線的距離或時滿足條件,根據點到直線距離可知,①②④滿足條件.故選:D.【點睛】本題考查直線與圓的位置關系的應用,涉及點到直線的距離公式.5.B【解析】
求出函數的導數,利用切線方程通過f′(0),求解即可;【詳解】f(x)的定義域為(﹣1,+∞),因為f′(x)a,曲線y=f(x)在點(0,f(0))處的切線方程為y=2x,可得1﹣a=2,解得a=﹣1,故選:B.【點睛】本題考查函數的導數的幾何意義,切線方程的求法,考查計算能力.6.C【解析】
根據復數代數形式的運算法則求出,再根據共軛復數的概念求解即可.【詳解】解:∵,∴,則,∴,故選:C.【點睛】本題主要考查復數代數形式的運算法則,考查共軛復數的概念,屬于基礎題.7.B【解析】
轉化,為,利用復數的除法化簡,即得解【詳解】復數滿足:所以故選:B【點睛】本題考查了復數的除法和復數的基本概念,考查了學生概念理解,數學運算的能力,屬于基礎題.8.B【解析】
展開式中的每一項是由每個括號中各出一項組成的,所以可分成三種情況.【詳解】展開式中的項為常數項,有3種情況:(1)5個括號都出1,即;(2)兩個括號出,兩個括號出,一個括號出1,即;(3)一個括號出,一個括號出,三個括號出1,即;所以展開項中的常數項為,故選B.【點睛】本題考查二項式定理知識的生成過程,考查定理的本質,即展開式中每一項是由每個括號各出一項相乘組合而成的.9.B【解析】
計算求半徑為,再計算球體積和圓錐體積,計算得到答案.【詳解】如圖所示:設球半徑為,則,解得.故求體積為:,圓錐的體積:,故.故選:.【點睛】本題考查了圓錐,球體積,圓錐的外接球問題,意在考查學生的計算能力和空間想象能力.10.A【解析】
利用等差數列的求和公式及等差數列的性質可以求得結果.【詳解】由,,得.選A.【點睛】本題主要考查等差數列的求和公式及等差數列的性質,等差數列的等和性應用能快速求得結果.11.C【解析】
判斷圓心與直線的關系,確定直線,關于直線對稱的充要條件是與直線垂直,從而等于到直線的距離,由切線性質求出,得,從而得.【詳解】如圖,設圓的圓心為,半徑為,點不在直線上,要滿足直線,關于直線對稱,則必垂直于直線,∴,設,則,,∴,.故選:C.【點睛】本題考查直線與圓的位置關系,考查直線的對稱性,解題關鍵是由圓的兩條切線關于直線對稱,得出與直線垂直,從而得就是圓心到直線的距離,這樣在直角三角形中可求得角.12.C【解析】
由可得,故可求的值.【詳解】因為,所以,故,因為正項等比數列,故,所以,故選C.【點睛】一般地,如果為等比數列,為其前項和,則有性質:(1)若,則;(2)公比時,則有,其中為常數且;(3)為等比數列()且公比為.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
,,分類討論即可.【詳解】由已知,,,若,則或解得或,所以不等式的解集為.故答案為:【點睛】本題考查分段函數的應用,涉及到解一元二次不等式,考查學生的計算能力,是一道中檔題.14.【解析】
根據圖示分析出、、的坐標表示,然后根據坐標形式下向量的數量積為零計算出的取值.【詳解】由圖可知:,所以,又因為,所以,所以.故答案為:.【點睛】本題考查向量的坐標表示以及坐標形式下向量的數量積運算,難度較易.已知,若,則有.15.2【解析】
先由題意列出關于的方程,求得的通項公式,再表示出即可求解.【詳解】解:設公比為,且,時,上式有最小值,故答案為:2.【點睛】本題考查等比數列、等差數列的有關性質以及等比數列求積、求最值的有關運算,中檔題.16.【解析】
根據向量共線定理得A,B,C三點共線,再根據點斜式得結果【詳解】因為,且α+β=1,所以A,B,C三點共線,因此點C的軌跡為直線AB:【點睛】本題考查向量共線定理以及直線點斜式方程,考查基本分析求解能力,屬中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)見解析;(Ⅱ)【解析】
(Ⅰ)要證明線面平行,需先證明線線平行,所以連接,交于點M,連接ME,證明;(Ⅱ)由題意可知點到平面ABC的距離等于點到平面ABC的距離,根據體積公式剩余部分的體積是.【詳解】(Ⅰ)如圖,連接,交于點M,連接ME,則.因為平面,平面,所以平面.(Ⅱ)因為平面ABC,所以點到平面ABC的距離等于點到平面ABC的距離.如圖,設O是AC的中點,連接,OB.因為為正三角形,所以,又平面平面,平面平面,所以平面ABC.所以點到平面ABC的距離,故三棱錐的體積為.而斜三棱柱的體積為.所以剩余部分的體積為.【點睛】本題考查證明線面平行,計算體積,意在考查推理證明,空間想象能力,計算能力,屬于中檔題型,一般證明線面平行的方法1.證明線線平行,則線面平行,2.證明面面平行,則線面平行,關鍵是證明線線平行,一般構造平行四邊形,則對邊平行,或是構造三角形中位線.18.(1)(2)【解析】
(1)根據題意即可寫出該批次產品長度誤差的絕對值的頻率分布列,再根據期望公式即可求出;(2)由(1)可知,任取一件產品是標準長度的概率為0.4,即可求出隨機抽取2件產品,都不是標準長度產品的概率,由對立事件的概率公式即可得到隨機抽取2件產品,至少有1件是標準長度產品的概率,判斷其是否符合生產要求;當不符合要求時,設生產一件產品為標準長度的概率為,可根據上述方法求出,解,即可得出最小值.【詳解】(1)由柱狀圖,該批次產品長度誤差的絕對值的頻率分布列為下表:00.010.020.030.04頻率0.40.30.20.0750.025所以的數學期望的估計為.(2)由(1)可知任取一件產品是標準長度的概率為0.4,設至少有1件是標準長度產品為事件,則,故不符合概率不小于0.8的要求.設生產一件產品為標準長度的概率為,由題意,又,解得,所以符合要求時,生產一件產品為標準長度的概率的最小值為.【點睛】本題主要考查離散型隨機變量的期望的求法,相互獨立事件同時發(fā)生的概率公式的應用,對立事件的概率公式的應用,解題關鍵是對題意的理解,意在考查學生的數學建模能力和數學運算能力,屬于基礎題.19.(1);(2)【解析】
(1)根據正弦定理,可得△ABC為直角三角形,然后可計算b,可得結果.(2)計算,然后根據余弦定理,可得,利用平方關系,可得結果.【詳解】(1)△ABC中,由csinC=asinA+bsinB,利用正弦定理得c2=a2+b2,所以△ABC是直角三角形.又a=3,B=60°,所以;所以△ABC的面積為.(2)設D靠近點B,則BD=DE=EC=1.,所以所以.【點睛】本題考查正弦定理的應用,屬基礎題.20.(1);(2).【解析】
(1)根據橢圓的離心率為,得到,根據直線與圓的位置關系,得到原心到直線的距離等于半徑,得到,從而求得,進而求得橢圓的方程;(2)分直線的斜率存在是否為0與不存在三種情況討論,寫出直線的方程,與橢圓方程聯(lián)立,利用韋達定理,向量的數量積,結合已知條件求得結果.【詳解】(1)由離心率為,可得,,且以原點O為圓心,橢圓C的長半軸長為半徑的圓的方程為,因與直線相切,則有,即,,,故而橢圓方程為.(2)①當直線l的斜率不存在時,,,由于;②當直線l的斜率為0時,,,則;③當直線l的斜率不為0時,設直線l的方程為,,,由及,得,有,∴,,,,∴,綜上所述:.【點睛】該題考查直線與圓錐曲線的綜合問題,橢圓的標準方程,考查直線與橢圓的位
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 1 小蝌蚪找媽媽 教學設計-2024-2025學年語文二年級上冊(部編版)
- 股權代持合同標準范本
- 8 古詩二首 望廬山瀑布 教學設計-2024-2025學年語文二年級上冊統(tǒng)編版
- Module 12 help unit 1 What should we do before help arrives英文版教學設計 - 2024-2025學年外研版八年級英語上冊
- 10 我們當地的風俗(教學設計)2023-2024學年統(tǒng)編版道德與法治六年級上冊
- 11 我是一張紙 第二課時 教學設計-2023-2024學年道德與法治二年級下冊統(tǒng)編版
- 個人產品采購合同范本
- 絹花加工合同范本
- 燃氣合同范本模板
- 2023年浙江省中考科學一輪專題輔導教學設計:酸堿鹽
- 甘肅省白銀市2024年中考英語真題
- 2024年全國職業(yè)院校技能大賽(智能制造設備技術應用賽項)考試題庫(含答案)
- 趙家溝金礦改擴建項目建設工程可行性建議書
- 《財務會計基礎》課件-認知原始憑證
- 春天古詩包含內容模板
- 應征公民政治考核表(含各種附表)
- 《研學旅行市場營銷》課件-研學旅行市場營銷之內容營銷
- 安全生產責任制考核制度和考核表(完整版)
- 19J102-1 19G613混凝土小型空心砌塊墻體建筑與結構構造
- 經皮式氣管切開術
- 2024嘉興市城南街道招聘筆試參考題庫附帶答案詳解
評論
0/150
提交評論