




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1YSHelp
toRta
朽木易折,金石可鏤。
Release13.0-?2023年年SASIP,Inc.Allrightsreserved.
TableofContents
1.AnalyzingThermalPhenomena
1.1.HowANSYSTreatsThermalModeling
1.1.1.Convection
1.1.2.Radiation
1.1.3.SpecialEffects
1.1.4.Far-FieldElements
1.2.TypesofThermalAnalysis
1.3.Coupled-FieldAnalyses
1.4.AboutGUIPathsandCommandSyntax
2.Steady-StateThermalAnalysis
2.1.AvailableElementsforThermalAnalysis
2.2.CommandsUsedinThermalAnalyses
2.3.TasksinaThermalAnalysis
2.4.BuildingtheModel
2.4.1.UsingtheSurfaceEffectElements
2.4.2.CreatingModelGeometry
2.5.ApplyingLoadsandObtainingtheSolution
2.5.1.DefiningtheAnalysisType
2.5.2.ApplyingLoads
2.5.3.UsingTableandFunctionBoundaryConditions
2.5.4.SpecifyingLoadStepOptions
2.5.5.GeneralOptions
2.5.6.NonlinearOptions
2.5.7.OutputControls
2.5.8.DefiningAnalysisOptions
2.5.9.SavingtheModel
2.5.10.SolvingtheModel
2.6.ReviewingAnalysisResults
2.6.1.Primarydata
2.6.2.Deriveddata
2.6.3.ReadingInResults
朽木易折,金石可鏤。
2.6.4.ReviewingResults
2.7.ExampleofaSteady-StateThermalAnalysis(CommandorBatchMethod)
2.7.1.TheExampleDescribed
2.7.2.TheAnalysisApproach
2.7.3.CommandsforBuildingandSolvingtheModel
2.8.PerformingaSteady-StateThermalAnalysis(GUIMethod)
2.9.PerformingaThermalAnalysisUsingTabularBoundaryConditions
2.9.1.RunningtheSampleProblemviaCommands
2.9.2.RunningtheSampleProblemInteractively
2.10.WheretoFindOtherExamplesofThermalAnalysis
3.TransientThermalAnalysis
3.1.ElementsandCommandsUsedinTransientThermalAnalysis
3.2.TasksinaTransientThermalAnalysis
3.3.BuildingtheModel
3.4.ApplyingLoadsandObtainingaSolution
3.4.1.DefiningtheAnalysisType
3.4.2.EstablishingInitialConditionsforYourAnalysis
3.4.3.SpecifyingLoadStepOptions
3.4.4.NonlinearOptions
3.4.5.OutputControls
3.5.SavingtheModel
3.5.1.SolvingtheModel
3.6.ReviewingAnalysisResults
3.6.1.HowtoReviewResults
3.6.2.ReviewingResultswiththeGeneralPostprocessor
3.6.3.ReviewingResultswiththeTimeHistoryPostprocessor
3.7.ReviewingResultsasGraphicsorTables
3.7.1.ReviewingContourDisplays
3.7.2.ReviewingVectorDisplays
3.7.3.ReviewingTableListings
3.8.PhaseChange
3.9.ExampleofaTransientThermalAnalysis
3.9.1.TheExampleDescribed
3.9.2.ExampleMaterialPropertyValues
3.9.3.ExampleofaTransientThermalAnalysis(GUIMethod)
3.9.4.CommandsforBuildingandSolvingtheModel
3.10.WheretoFindOtherExamplesofTransientThermalAnalysis
4.Radiation
4.1.AnalyzingRadiationProblems
4.2.Definitions
4.3.UsingLINK31,theRadiationLinkElement
4.4.ModelingRadiationBetweenaSurfaceandaPoint
4.5.UsingtheAUX12RadiationMatrixMethod
4.5.1.Procedure
4.5.2.RecommendationsforUsingSpaceNodes
4.5.3.GeneralGuidelinesfortheAUX12RadiationMatrixMethod
4.6.UsingtheRadioshySolverMethod
4.6.1.Procedure
4.6.2.FurtherOptionsforStaticAnalysis
4.7.AdvancedRadiosityOptions
4.8.Exampleofa2-DRadiationAnalysisUsingtheRadiosityMethod(Command
Method)
4.8.1.TheExampleDescribed
4.8.2.CommandsforBuildingandSolvingtheModel
4.9.Exampleofa2-DRadiationAnalysisUsingtheRadiosityMethodwith
DecimationandSymmetry(CommandMethod)
4.9.1.TheExampleDescribed
4.9.2.CommandsforBuildingandSolvingtheModel
Release13.0-?2023年年SASIP,Inc.Allrightsreserved.
朽木易折,金石可鏤。
Chapter1:AnalyzingThermalPhenomena
Athermalanalysiscalculatesthetemperaturedistributionandrelatedthermalquantitiesin
asystemorcomponent.Typicalthermalquantitiesofinterestare:
?Thetemperaturedistributions
?Theamountofheatlostorgained
?Thermalgradients
?Thermalfluxes.
Thermalsimulationsplayanimportantroleinthedesignofmanyengineeringapplications,
includnginternalcombustionengines,turbines,heatexchangers,pipingsystems,and
electroniccomponents.Inmanycases,engineersfollowathermalanalysiswithastress
analysistocalculatethermalstresses(thatis,stressescausedbythermalexpansionsor
contractions).
Thefollowingthermalanalysistopicsareavailable:
?HowANSYSTreatsThermalModeling
?TypesofThermalAnalysis
?Coupled-FieldAnalyses
?AboutGUIPathsandCommandSyntax
1.1.HowANSYSTreatsThermalModeling
OnlytneANSYSMultiphysics,ANSYSMechanical,ANSYSProfessional,andANSYS
FLOTRANprogramssupportthermalanalyses.
ThebasisforthermalanalysisinANSYSisaheatbalanceequationobtainedfromthe
principleofconservationofenergy.(Fordetails,consulttheTheoryReferenceforthe
MechanicalAPDLandMechanicalApplications)Thefiniteelementsolutionyouperform
viaANSYScalculatesnodaltemperatures,thenusesthenodaltemperaturestoobtain
otherthermalquantities.
TheANSYSprogramhandlesallthreeprimarymodesofheattransfer:conduction,
convection,andradiation.
1.1.1.Convection
Youspecifyconvectionasasurfaceloadonconductingsolidelementsorshellelements.
Youspecifytheconvectionfilmcoefficientandthebulkfluidtemperatureatasurface;
ANSYSthencalculatestheappropriateheattransferacrossthatsurface.Ifthefilm
coefficientdependsupontemperature,youspecifyatableoftemperaturesalongwiththe
correspondingvaluesoffilmcoefficientateachtemperature.
Foruseinfiniteelementmodelswithconductingbarelements(whichdonotallowa
convectionsurfaceload),orincaseswherethebulkfluidtemperatureisnotknownin
advance,ANSYSoffersaconvectionelementnamedLINK34.Inaddition,youcanusethe
FLOTRANCFDelementstosimulatedetailsoftheconvectionprocess,suchasfluid
velocities,localvaluesoffilmcoefficientandheatflux,andtemperaturedistributionsinboth
fluidandsolidregions.
1.1.2.Radiation
ANSYScansolveradiationproblems,whicharenonlinear,infourways:
?Byusingtheradiationlinkelement,LINK31
?Byusingsurfaceeffectelementswiththeradiationoption(SURF151in2-D
modelingorSURF152in3-Dmodeling)
?BygeneratingaradiatonmatrixinAUX12andusingitasasuperelementina
thermalanalysis.
?ByusingtheRadiositySolvermethod.
Fordetailedinformationonthesemethods,seeRadiation.
1.1.3.SpecialEffects
Inadditiontothethreemodesofheattransfer,youcanaccountforspecialeffectssuchas
changeofphase(meltingorfreezing)andinternalheatgeneration(duetoJouleheating,
forexample).Forinstance,youcanusethethermalmasselementMASS71tospecify
temperature-dependentheatgenerationrates.
1.1.4.Far-FieldElements
Far-fieldelementsallowyoutomodeltheeffectsoffar-fieddecaywithouthavingtospecify
assumedboundaryconditionsattheexteriorofthemodel.Asinglelayerofelementsis
朽木易折,金石可鏤。
usedtorepresentanexteriorsub-domainofsemi-infiniteextent.Formoreinformation,see
Far-FieldElementsintheLow-F/euueAcyElectromaqneticAnalysisGuide.
1.2.TypesofThermalAnalysis
ANSYSsupportstwotypesofthermalanalysis:
1.Asteady-statethermalanalysisdeterminesthetemperaturedistributionandother
thermalquantitiesundersteady-stateloadingconditions.Asteady-stateloading
conditionisasituationwhereheatstorageeffectsvaryingoveraperiodoftimecan
beignored.
2.Atransientthermalanalysisdeterminesthetemperaturedistributionandother
thermalquantitiesunderconditionsthatvaryoveraperiodoftime.
1.3.Coupled-FieldAnalyses
Sometypesofcoupled-fieldanalyses,suchasthermal-structuralandmagnetic-thermal
analyses,canrepresentthermaletfectscoupledwithotherphenomena.Acoupled-field
analysiscanusematrix-coupledANSYSelements,orsequentialload-vectorcoupling
betweenseparatesimulationsofeachphenomenon.Formoreinformationoncoupled-field
analysis,seetheCoupled-FieldAnalysisGuide.
1.4.AboutGUIPathsandCommandSyntax
Throughoutthisdocument,youwillseereferencestoANSYScommandsandtheir
equivalentGUIpaths.Suchreferencesuseonlythecommandname,becauseyoudonot
alwaysneedtospecifyallofacommand'sarguments,andspecificcombinationsof
commandargumentsperformdifferentfunctions.Forcompletesyntaxdescriptionsof
ANSYScommands,consulttheCommandReference.
TheGUIpathsshownareascompleteaspossible.Inmanycases,choosingtheGUIpath
asshownwillperformthefunctionyouwant.Inothercases,choosingtheGUIpathgivenin
thisdocumenttakesyoutoamenuordialogbox;fromthere,youmustchooseadditional
optionsthatareappropriateforthespecifictaskbeingperformed.
Foralltypesofanalysesdescribedinthisguide,specifythematerialyouwillbesimulating
usinganintuitivematerialmodelinterface.Thisinterfaceusesahierarchicaltreestructure
ofmaterialcategories,whichisintendedtoassistyouinchoosingtheappropriatemodelfor
youranalysis.SeeMaterialModelInterfaceintheBasicAnalysisGuidefordetailsonthe
materialmodelinterface.
Release13.0-?2023年年SASIP,Inc.Allrightsreserved.
朽木易折,金石可鏤。
Chapter2:Steady-StateThermalAnalysis
TheANSYSMultiphysics,ANSYSMechanical,ANSYSFLOTRAN,andANSYS
Professionalproductssupportsteady-statethermalanalysis.Asteady-statethermal
analysiscalculatestheeffectsofs:eadythermalloadsonasystemorcomponent.
Engineer/analystsoftenperformasteady-stateanalysisbeforeperformingatransient
thermalanalysis,tohelpestablishinitialconditions.Asteady-stateanalysisalsocanbethe
laststepofatransientthermalanalysis,performedafteralltransienteffectshave
diminished.
Youcanusesteady-statethermalanalysistodeterminetemperatures,thermalgradients,
heatflowrates,andheatfluxesinanobjectthatarecausedbythermalloadsthatdonot
varyovertime.Suchloadsincludethefollowing:
?Convections
?Radiation
?Heatflowrates
?Heatfluxes(heatflowperunitarea)
?Heatgenerationrates(heatflowperunitvolume)
?Constanttemperatureboundaries
Asteady-statethermalanalysismaybeeitherlinear,withconstantmaterialproperties;or
nonlinear,withmaterialpropertiesthatdependontemperature.Thethermalpropertiesof
mostmaterialdovarywithtemperature,sotheanalysisusuallyisnonlinear.Including
radiationeffectsalsomakestheanalysisnonlinear.
Thefollowingsteady-statethermalanalysistopicsareavailable:
?AvailableElementsforThermalAnalysis
?CommandsUsedinThermalAnalyses
?TasksinaThermalAnalysis
?BuildingtheModel
?ApplyingLoadsandObtainingtheSolution
?ReviewingAnalysisResults
?ExampleofaSteady-StateThermalAnalysis(CommandorBatchMethod)
?PerformingaSteady-StateThermalAnalysis(GUIMethod)
?PerformingaThermalAnalysisUsingTabularBoundaryConditions
?WheretoFindOtherExamplesofThermalAnalysis
2.1.AvailableElementsforThermalAnalysis
TheANSYSandANSYSProfessionalprogramsincludeabout40elements(described
below)tohelpyouperformsteady-statethermalanalyses.
Fordetailedinformationabouttheelements,seetheElementReference、whichmanual
organizeselementdescriptionsinnumericorder.
Elementnamesareshowninuppercase.Allelementsapplytobothsteady-stateand
transientthermalanalyses.SOLID70alsocancompensateformasstransportheatflow
fromaconstantvelocityfield.
Table2.12-DSolidElements
ElementDimens.ShapeorCharacteristicDOFs
PLANE352-DTriangle,6-nodeTemperature(ateachnode)
PLANE552-DQuadrilateral,4-nodeTemperature(ateachnode)
PLANE752-DHarmonic,4-nodeTemperature(ateachnode)
PLANE772-DQuadrilateral,8-nodeTemperature(ateachnode)
PLANE782-DHarmonic,8-nodeTemperature(ateachnode)
Table2.23-DSolidElements
ElementDimens.ShapeorCharacteristicDOFs
SOLID703-DBrick,8-nodeTemperature(ateachnode)
SOLID873-DTetrahedron,10-nodeTemperature(ateachnode)
SOLID903-DBrick,20-nodeTemperature(ateachnode)
SOLID2783-DBrick,8-nodeTemperature(ateachnode)
SOLID2793-DBrick,20-nodeTemperature(ateachnode)
Table2.3RadiationLinkElements
ElementDimens.ShapeorCharacteristicDOFs
LINK312-Dor3-DLine,2-nodeTemperature(ateachnode)
朽木易折,金石可鏤。
Table2.4ConductingBarElements
ElementDimens.ShapeorCharacteristicDOFs
LINK333-DLine,2-nodeTemperature(ateachnode)
Table2.5ConvectionLinkElements
ElementDimens.ShapeorCharacteristicDOFs
LINK343-DLine,2-nodeTemperature(ateachnode)
Table2.6ShellElements
ElementDimens.ShapeorCharacteristicDOFs
SHELL1313-DQuadrilateral,4-nodeMultipletemperatures(ateachnode)
SHELL1323-DQuadrilateral,8-nodeMultipletemperatures(ateachnode)
Table2.7Coupled-FieldElements
ElementDimens.ShapeorCharacteristicDOFs
PLANE132-DThermal-structural,4-nodeTemperature,structural
displacement,electric
potential,magneticvector
potential
FLUID1163-DThermal-fluid,2-nodeor4-nodeTemperature,pressure
SOLID53-DThermal-structuralandTemperature,structural
thermal-electric,8-nodedisplacement,electric
potential,andmagnetic
scalarpotential
SOLID983-DThermal-structuralandTemperature,structural
thermal-electric,10-nodedisplacement,electric
potential,magneticvector
potential
LINK683-DThermal-electric,2-nodeTemperature,electric
potential
SHELL1573-DThermal-electric,4-nodeTemperature,electric
ElementDimens.ShapeorCharacteristicDOFs
potential
TARGE1692-DTargetsegmentelementTemperature,structural
displacement,electric
potential
TARGE1703-DTargetsegmentelementTemperature,structural
displacement,electric
potential
C0NTA1712-DSurface-to-surfacecontactelement,Temperature,structural
2-nodedisplacement,electric
potential
CONTA1722-DSurface-to-surfacecontactelement,Temperature,structural
3-nodedisplacement,electric
potential
|CONTA1733-DSurface-to-surfacecontactelement,Temperature,structural
4-nodedisplacement,electric
potential
CONTA1743-DSurface-to-surfacecontactelement,Temperature,structural
8-nodedisplacement,electric
potential
CONTA1752-D/3-DNode-to-surfacecontactelement,1Temperature,structural
nodedisplacement,electric
potential
PLANE2232-DThermal-structural,thermal-electric,Temperature,structural
structural-thermoelectric,anddisplacement,electric
thermal-piezoelectric,8-nodepotential
SOLID2263-DThermal-structural,thermal-electric,Temperature,structural
structural-thermoelectric,anddisplacement,electric
thermal-piezoelectric,20-nodepotential
SOLID2273-DThermal-structural,thermal-electric,Temperature,structural
structural-thermoelectric,anddisplacement,electric
thermal-piezoelectric,10-nodepotential
Table2.8SpecialtyElements
朽木易折,金石可鏤。
ElementDimens.ShapeorCharacteristicDOFs
MASS711-D,2-D,Mass,one-nodeTemperature
or3-D
COMBIN371-DControlelement,4-nodeTemperature,structural
displacement,rotation,pressure
SURF1512-DSurfaceeffectelement,Temperature
2-nodeto4-node
SURF1523-DSurfaceeffectelement,Temperature
4-nodeto9-node
MATRIX50[1]Matrixorradiationmatrix[1]
element,nofixed
geometry
INFIN9[212-DInfiniteboundary,2-nodeTemperature,magneticvector
potential
INFIN47[2]3-DInfiniteboundary,4-nodeTemperature,magneticvector
potential
INFIN1102-DInfiniteboundary,4or8Temperature,magneticvector
[2]nodespotential,electricpotential
INFIN1113-DInfiniteboundary,8or20Temperature,magneticscalar
[2]nodespotential,magneticvector
potential,electricpotential
COMBIN141-D,2-D,Combinationelement,Temperature,structural
or3-D2-nodedisplacement,rotation,pressure
COMBIN391-DCombinationelement,Temperature,structural
2-nodedisplacement,rotation,pressure
COMBIN401-DCombinationelement,Temperature,structural
2-nodedisplacement,rotation,pressure
1.Asdeterminedfromtheelementtypesincludedinthissuperelement.
2.Forinformationonmodelingtheeffectsoffar-fielddecay,seeFar-FieldElementsin
theLow-FrecueccpElectromagneticAnalysisGuide.
2.2.CommandsUsedinThermalAnalyses
ExampleofaSteady-StateTnermalAnalysis(CommandorBatchMethod)andPerforming
aSteady-StateThermalAnalysis(GUIMethod)showyouhowtoperformanexample
steady-statethermalanalysisviacommandandviaGUI,respectively.
Fordetailed,alphabetizeddescriptionsoftheANSYScommands,seetheCommand
Reference.
2.3.TasksinaThermalAnalysis
Theprocedureforperformingathermalanalysisinvolvesthreemaintasks:
?Buildthemodel.
?Applyloadsandobtainthesolution.
?Reviewtheresults.
Thenextfewtopicsdiscusswhatyoumustdotoperformthesesteps.First,thetext
presentsageneraldescriptionofthetasksrequiredtocompleteeachstep.Anexample
follows,basedonanactualsteady-statethermalanalysisofapipejunction.Theexample
walksyouthroughdoingtheanalysisbychoosingitemsfromANSYSGUImenus,then
showsyouhowtoperformthesameanalysisusingANSYScommands.
2.4.BuildingtheModel
Tobuildthemodel,youspecifythejobnameandatitleforyouranalysis.Then,youusethe
ANSYSpreprocessor(PREP7)todefinetheelementtypes,elementrealconstants,
materialproperties,andthemodelgeometry.(Thesetasksarecommontomostanalyses.
TheModelingandMeshingGuideexplainsthemindetail.)
Forathermalanalysis,youalsoneedtokeepthesepointsinmind:
?Tospecifyelementtypes,youuseeitherofthefollowing:
Command(s):ET
GUI:MainMenu>PreprocessorElementType>Add/Edit/Delete
?Todefineconstantmaterialproperties,useeitherofthefollowing:
朽木易折,金石可鏤。
Command(s):
MP
GJMainMenu>PreprocessorMaterialProps>MaterialModels>
Thermal
?Thematerialpropertiescanbeinputasnumericalvaluesorastableinputsforsome
elements.Tabularmaterialpropertiesarecalculatedbeforethefirstiteration(i.e.,
usinginitialvalues[IC]),SeetheMPcommandformoreinformationonwhich
elementscanusetabularmaterialproperties.
?Todefinetemperature-dependentproperties,youfirstneedtodefineatableof
temperatures.Then,definecorrespondingmaterialpropertyvalues.Todefinethe
temperaturestable,useeitherofthefollowing:
MPTEMPor
Command(s):
MPTGEN,andtodefinecorrespondingmaterialpropertyvalues,use
MPDATA.
MainMenu>PreprocessorMaterialProps>MaterialModels>
GUI:
Thermal
UsethesameGUImenuchoicesorthesamecommandstodefinetemperature-dependent
filmcoefficients(HF)forconvection.
Caution:Ifyouspecifytemperature-dependentfilmcoefficients(HF)inpolynomialform,
youshouldspecifyatemperaturetablebeforeyoudefineothermaterialshaving
constantproperties.
2.4.1.UsingtheSurfaceEffectElements
Youcanusethesurfaceeffectelements(SURF151,SURF152)toapplyheattransferfor
convection/radiationeffectsonafiniteelementmesh.Thesurfaceeffectelementsalso
allowyoutogeneratefilmcoefficientsandbulktemperaturesfromFLUID116elementsand
tomodelradiationtoapoint.Youcanalsotransferexternalloads(suchasfromCFX)to
ANSYSusingtheseelements.
Theguidelinesforusingsurfaceeffectelementsfollow:
1.Createandmeshthethermalregionasdescribedabove.
2.UseESURFtogeneratetheSURF151orSURF152elementsonthesurfacesofthe
finiteelementmesh.
ForSHELL131andSHELL132models,youmustuseSURF152.SetKEYOPT(11)=
1forthetoplayerandKEYOPT(11)=2forthebotomlayer.
ForFLUID116models,theSURF151andSURF152elementscanusethesingle
extranodeoption(KEYOPT(5)=1,KEYOPT(6)=0)togetthebulktemperature
fromaFLUID116element(KEYOPT(2)=1).
SURF151andSURF152elementscanalsobeusedtodefinefilmeffectivenessona
convectionsurface.Formoreinformationonfilmeffectiveness,seeConductionand
ConvectionintheTheoryReferencefortheMechanicalAPDLandMechanical
Applications.
Forgreateraccuracy,theSURF151andSURF152elementscanusetheoptionof
twoextranodes(KEYOPT(5)-2,KEYOPT(6)-0)togetbulktemperaturesfrom
FLUID116elements(KEYOPT(2)=1).Fortwoextranodes,youmustset
KEYOPT(5)to0beforeissuingtheESURFcommand.AfterissuingESURF,youset
KEYOPT⑸to2andissuetheMSTOLEcommandtoaddthetwoextranodestothe
SURF151orSURF152elements.
ThefollowingmethodsareavailableformappingtheFLUID116nodestothe
SURF151orSURF152elementswithMSTOLE.
?Minimumcentroiddistancemethod:ThecentroidsoftheFLUID116and
SURF151orSURF152elementsaredeterminedandthenodesofeach
FLUID116elerrentaremappedtotheSURF151orSURF152elementthat
hastheminimumcentroiddistance.Theminimumcentroiddistancemethod
willalwayswork,butitmightnotgivethemostaccurateresults.
Figure2.1MinimumCentroidDistanceMethod
SURF151
orSURF152
Elements\
FLUID116
ElementsXXX
朽木易折,金石可鏤。
?Projectionmethod:ThenodesofaFLUID116elementaremappedtoa
SURF151orSURF152elementiftheprojectionfromthecentroidofthe
SURF151orSURF152elementtotheFLUID116elementintersectsthe
FLUID116elementperpendicularly.AerrormessageisissuedIfaprojection
fromaSURF151orSURF152elementdoesnotintersectanyFLUID116
elementperpendicularly.
Figure2.2ProjectionMethod
SURF151
orSURF152
Elements
i
i
FLUID1161idTT
ElementsX?XX
?Hybridmethod:Thehybridmethodisacombinationoftheprojectionand
minimumcentroiddistancemethods.Inthismethod,theprojectionmethodis
triedfirst.Iftheprojectionmethodfailstomapcorrectly,aswitchismadeto
theminimumcentroiddistancemethod.Anynecessaryswitchingisdoneona
per-elementbasis.
IftheFLUID116elementlengthsvarysignificantlyasshowninthefollowingtwo
figures,theprojectionmethodisbetterthantheminimumcentroiddistancemethod.
Theminimumcentroiddistancemethodwouldmapthenodesoftheshorter
FLUID116elementtotheSURF151orSURF152element,buttheprojectionmethod
wouldmapthenodesofthelongerFLUID116elementtotheSURF151orSURF152
element.
Figure2.3VaryingFLUID116ElementLength-MinimumCentroidDistance
Method
Figure2.4VaryingFLUID116ElementLength-ProjectionMethod
SURF151
orSURF152--------------------------------------------*----------
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年中國藍(lán)鯨搖頭燈行業(yè)市場發(fā)展前景及發(fā)展趨勢與投資戰(zhàn)略研究報(bào)告
- 2025年直流太陽能電池泵項(xiàng)目投資可行性研究分析報(bào)告-20241226-174715
- 2025年直柄接桿刀柄項(xiàng)目投資可行性研究分析報(bào)告
- 銅礦粉加工可行性研究報(bào)告
- 2025年三針六線包縫機(jī)項(xiàng)目投資可行性研究分析報(bào)告
- 中國低壓自愈式電容器行業(yè)市場規(guī)模及投資前景預(yù)測分析報(bào)告
- 2025年翻領(lǐng)工裝茄克項(xiàng)目投資可行性研究分析報(bào)告
- 2022-2027年中國帽類行業(yè)市場深度分析及投資規(guī)劃建議報(bào)告
- 2024-2030年中國鋼易拉罐行業(yè)市場發(fā)展監(jiān)測及投資潛力預(yù)測報(bào)告
- 2025年中國滋陰清熱用藥行業(yè)市場調(diào)研分析及投資戰(zhàn)略咨詢報(bào)告
- 《井中分布式光纖聲波傳感數(shù)據(jù)采集規(guī)程》標(biāo)準(zhǔn)報(bào)批稿
- 人音版 音樂 八年級下冊 第一單元 我和你教案
- 代理法人免責(zé)協(xié)議書版本
- 2024年青島港灣職業(yè)技術(shù)學(xué)院單招職業(yè)適應(yīng)性測試題庫必考題
- 門診導(dǎo)診課件
- python程序設(shè)計(jì)-說課
- 《糖尿病患者血脂管理中國專家共識(2024版)》解讀
- 廣州石牌村改造規(guī)劃方案
- GB/T 22919.12-2024水產(chǎn)配合飼料第12部分:鯽魚配合飼料
- IP承載網(wǎng)架構(gòu)規(guī)劃及路由部署N
- (完整word版)現(xiàn)代漢語常用詞表
評論
0/150
提交評論