ANSYS130理論參考手冊_第1頁
ANSYS130理論參考手冊_第2頁
ANSYS130理論參考手冊_第3頁
ANSYS130理論參考手冊_第4頁
ANSYS130理論參考手冊_第5頁
已閱讀5頁,還剩119頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1YSHelp

toRta

朽木易折,金石可鏤。

Release13.0-?2023年年SASIP,Inc.Allrightsreserved.

TableofContents

1.AnalyzingThermalPhenomena

1.1.HowANSYSTreatsThermalModeling

1.1.1.Convection

1.1.2.Radiation

1.1.3.SpecialEffects

1.1.4.Far-FieldElements

1.2.TypesofThermalAnalysis

1.3.Coupled-FieldAnalyses

1.4.AboutGUIPathsandCommandSyntax

2.Steady-StateThermalAnalysis

2.1.AvailableElementsforThermalAnalysis

2.2.CommandsUsedinThermalAnalyses

2.3.TasksinaThermalAnalysis

2.4.BuildingtheModel

2.4.1.UsingtheSurfaceEffectElements

2.4.2.CreatingModelGeometry

2.5.ApplyingLoadsandObtainingtheSolution

2.5.1.DefiningtheAnalysisType

2.5.2.ApplyingLoads

2.5.3.UsingTableandFunctionBoundaryConditions

2.5.4.SpecifyingLoadStepOptions

2.5.5.GeneralOptions

2.5.6.NonlinearOptions

2.5.7.OutputControls

2.5.8.DefiningAnalysisOptions

2.5.9.SavingtheModel

2.5.10.SolvingtheModel

2.6.ReviewingAnalysisResults

2.6.1.Primarydata

2.6.2.Deriveddata

2.6.3.ReadingInResults

朽木易折,金石可鏤。

2.6.4.ReviewingResults

2.7.ExampleofaSteady-StateThermalAnalysis(CommandorBatchMethod)

2.7.1.TheExampleDescribed

2.7.2.TheAnalysisApproach

2.7.3.CommandsforBuildingandSolvingtheModel

2.8.PerformingaSteady-StateThermalAnalysis(GUIMethod)

2.9.PerformingaThermalAnalysisUsingTabularBoundaryConditions

2.9.1.RunningtheSampleProblemviaCommands

2.9.2.RunningtheSampleProblemInteractively

2.10.WheretoFindOtherExamplesofThermalAnalysis

3.TransientThermalAnalysis

3.1.ElementsandCommandsUsedinTransientThermalAnalysis

3.2.TasksinaTransientThermalAnalysis

3.3.BuildingtheModel

3.4.ApplyingLoadsandObtainingaSolution

3.4.1.DefiningtheAnalysisType

3.4.2.EstablishingInitialConditionsforYourAnalysis

3.4.3.SpecifyingLoadStepOptions

3.4.4.NonlinearOptions

3.4.5.OutputControls

3.5.SavingtheModel

3.5.1.SolvingtheModel

3.6.ReviewingAnalysisResults

3.6.1.HowtoReviewResults

3.6.2.ReviewingResultswiththeGeneralPostprocessor

3.6.3.ReviewingResultswiththeTimeHistoryPostprocessor

3.7.ReviewingResultsasGraphicsorTables

3.7.1.ReviewingContourDisplays

3.7.2.ReviewingVectorDisplays

3.7.3.ReviewingTableListings

3.8.PhaseChange

3.9.ExampleofaTransientThermalAnalysis

3.9.1.TheExampleDescribed

3.9.2.ExampleMaterialPropertyValues

3.9.3.ExampleofaTransientThermalAnalysis(GUIMethod)

3.9.4.CommandsforBuildingandSolvingtheModel

3.10.WheretoFindOtherExamplesofTransientThermalAnalysis

4.Radiation

4.1.AnalyzingRadiationProblems

4.2.Definitions

4.3.UsingLINK31,theRadiationLinkElement

4.4.ModelingRadiationBetweenaSurfaceandaPoint

4.5.UsingtheAUX12RadiationMatrixMethod

4.5.1.Procedure

4.5.2.RecommendationsforUsingSpaceNodes

4.5.3.GeneralGuidelinesfortheAUX12RadiationMatrixMethod

4.6.UsingtheRadioshySolverMethod

4.6.1.Procedure

4.6.2.FurtherOptionsforStaticAnalysis

4.7.AdvancedRadiosityOptions

4.8.Exampleofa2-DRadiationAnalysisUsingtheRadiosityMethod(Command

Method)

4.8.1.TheExampleDescribed

4.8.2.CommandsforBuildingandSolvingtheModel

4.9.Exampleofa2-DRadiationAnalysisUsingtheRadiosityMethodwith

DecimationandSymmetry(CommandMethod)

4.9.1.TheExampleDescribed

4.9.2.CommandsforBuildingandSolvingtheModel

Release13.0-?2023年年SASIP,Inc.Allrightsreserved.

朽木易折,金石可鏤。

Chapter1:AnalyzingThermalPhenomena

Athermalanalysiscalculatesthetemperaturedistributionandrelatedthermalquantitiesin

asystemorcomponent.Typicalthermalquantitiesofinterestare:

?Thetemperaturedistributions

?Theamountofheatlostorgained

?Thermalgradients

?Thermalfluxes.

Thermalsimulationsplayanimportantroleinthedesignofmanyengineeringapplications,

includnginternalcombustionengines,turbines,heatexchangers,pipingsystems,and

electroniccomponents.Inmanycases,engineersfollowathermalanalysiswithastress

analysistocalculatethermalstresses(thatis,stressescausedbythermalexpansionsor

contractions).

Thefollowingthermalanalysistopicsareavailable:

?HowANSYSTreatsThermalModeling

?TypesofThermalAnalysis

?Coupled-FieldAnalyses

?AboutGUIPathsandCommandSyntax

1.1.HowANSYSTreatsThermalModeling

OnlytneANSYSMultiphysics,ANSYSMechanical,ANSYSProfessional,andANSYS

FLOTRANprogramssupportthermalanalyses.

ThebasisforthermalanalysisinANSYSisaheatbalanceequationobtainedfromthe

principleofconservationofenergy.(Fordetails,consulttheTheoryReferenceforthe

MechanicalAPDLandMechanicalApplications)Thefiniteelementsolutionyouperform

viaANSYScalculatesnodaltemperatures,thenusesthenodaltemperaturestoobtain

otherthermalquantities.

TheANSYSprogramhandlesallthreeprimarymodesofheattransfer:conduction,

convection,andradiation.

1.1.1.Convection

Youspecifyconvectionasasurfaceloadonconductingsolidelementsorshellelements.

Youspecifytheconvectionfilmcoefficientandthebulkfluidtemperatureatasurface;

ANSYSthencalculatestheappropriateheattransferacrossthatsurface.Ifthefilm

coefficientdependsupontemperature,youspecifyatableoftemperaturesalongwiththe

correspondingvaluesoffilmcoefficientateachtemperature.

Foruseinfiniteelementmodelswithconductingbarelements(whichdonotallowa

convectionsurfaceload),orincaseswherethebulkfluidtemperatureisnotknownin

advance,ANSYSoffersaconvectionelementnamedLINK34.Inaddition,youcanusethe

FLOTRANCFDelementstosimulatedetailsoftheconvectionprocess,suchasfluid

velocities,localvaluesoffilmcoefficientandheatflux,andtemperaturedistributionsinboth

fluidandsolidregions.

1.1.2.Radiation

ANSYScansolveradiationproblems,whicharenonlinear,infourways:

?Byusingtheradiationlinkelement,LINK31

?Byusingsurfaceeffectelementswiththeradiationoption(SURF151in2-D

modelingorSURF152in3-Dmodeling)

?BygeneratingaradiatonmatrixinAUX12andusingitasasuperelementina

thermalanalysis.

?ByusingtheRadiositySolvermethod.

Fordetailedinformationonthesemethods,seeRadiation.

1.1.3.SpecialEffects

Inadditiontothethreemodesofheattransfer,youcanaccountforspecialeffectssuchas

changeofphase(meltingorfreezing)andinternalheatgeneration(duetoJouleheating,

forexample).Forinstance,youcanusethethermalmasselementMASS71tospecify

temperature-dependentheatgenerationrates.

1.1.4.Far-FieldElements

Far-fieldelementsallowyoutomodeltheeffectsoffar-fieddecaywithouthavingtospecify

assumedboundaryconditionsattheexteriorofthemodel.Asinglelayerofelementsis

朽木易折,金石可鏤。

usedtorepresentanexteriorsub-domainofsemi-infiniteextent.Formoreinformation,see

Far-FieldElementsintheLow-F/euueAcyElectromaqneticAnalysisGuide.

1.2.TypesofThermalAnalysis

ANSYSsupportstwotypesofthermalanalysis:

1.Asteady-statethermalanalysisdeterminesthetemperaturedistributionandother

thermalquantitiesundersteady-stateloadingconditions.Asteady-stateloading

conditionisasituationwhereheatstorageeffectsvaryingoveraperiodoftimecan

beignored.

2.Atransientthermalanalysisdeterminesthetemperaturedistributionandother

thermalquantitiesunderconditionsthatvaryoveraperiodoftime.

1.3.Coupled-FieldAnalyses

Sometypesofcoupled-fieldanalyses,suchasthermal-structuralandmagnetic-thermal

analyses,canrepresentthermaletfectscoupledwithotherphenomena.Acoupled-field

analysiscanusematrix-coupledANSYSelements,orsequentialload-vectorcoupling

betweenseparatesimulationsofeachphenomenon.Formoreinformationoncoupled-field

analysis,seetheCoupled-FieldAnalysisGuide.

1.4.AboutGUIPathsandCommandSyntax

Throughoutthisdocument,youwillseereferencestoANSYScommandsandtheir

equivalentGUIpaths.Suchreferencesuseonlythecommandname,becauseyoudonot

alwaysneedtospecifyallofacommand'sarguments,andspecificcombinationsof

commandargumentsperformdifferentfunctions.Forcompletesyntaxdescriptionsof

ANSYScommands,consulttheCommandReference.

TheGUIpathsshownareascompleteaspossible.Inmanycases,choosingtheGUIpath

asshownwillperformthefunctionyouwant.Inothercases,choosingtheGUIpathgivenin

thisdocumenttakesyoutoamenuordialogbox;fromthere,youmustchooseadditional

optionsthatareappropriateforthespecifictaskbeingperformed.

Foralltypesofanalysesdescribedinthisguide,specifythematerialyouwillbesimulating

usinganintuitivematerialmodelinterface.Thisinterfaceusesahierarchicaltreestructure

ofmaterialcategories,whichisintendedtoassistyouinchoosingtheappropriatemodelfor

youranalysis.SeeMaterialModelInterfaceintheBasicAnalysisGuidefordetailsonthe

materialmodelinterface.

Release13.0-?2023年年SASIP,Inc.Allrightsreserved.

朽木易折,金石可鏤。

Chapter2:Steady-StateThermalAnalysis

TheANSYSMultiphysics,ANSYSMechanical,ANSYSFLOTRAN,andANSYS

Professionalproductssupportsteady-statethermalanalysis.Asteady-statethermal

analysiscalculatestheeffectsofs:eadythermalloadsonasystemorcomponent.

Engineer/analystsoftenperformasteady-stateanalysisbeforeperformingatransient

thermalanalysis,tohelpestablishinitialconditions.Asteady-stateanalysisalsocanbethe

laststepofatransientthermalanalysis,performedafteralltransienteffectshave

diminished.

Youcanusesteady-statethermalanalysistodeterminetemperatures,thermalgradients,

heatflowrates,andheatfluxesinanobjectthatarecausedbythermalloadsthatdonot

varyovertime.Suchloadsincludethefollowing:

?Convections

?Radiation

?Heatflowrates

?Heatfluxes(heatflowperunitarea)

?Heatgenerationrates(heatflowperunitvolume)

?Constanttemperatureboundaries

Asteady-statethermalanalysismaybeeitherlinear,withconstantmaterialproperties;or

nonlinear,withmaterialpropertiesthatdependontemperature.Thethermalpropertiesof

mostmaterialdovarywithtemperature,sotheanalysisusuallyisnonlinear.Including

radiationeffectsalsomakestheanalysisnonlinear.

Thefollowingsteady-statethermalanalysistopicsareavailable:

?AvailableElementsforThermalAnalysis

?CommandsUsedinThermalAnalyses

?TasksinaThermalAnalysis

?BuildingtheModel

?ApplyingLoadsandObtainingtheSolution

?ReviewingAnalysisResults

?ExampleofaSteady-StateThermalAnalysis(CommandorBatchMethod)

?PerformingaSteady-StateThermalAnalysis(GUIMethod)

?PerformingaThermalAnalysisUsingTabularBoundaryConditions

?WheretoFindOtherExamplesofThermalAnalysis

2.1.AvailableElementsforThermalAnalysis

TheANSYSandANSYSProfessionalprogramsincludeabout40elements(described

below)tohelpyouperformsteady-statethermalanalyses.

Fordetailedinformationabouttheelements,seetheElementReference、whichmanual

organizeselementdescriptionsinnumericorder.

Elementnamesareshowninuppercase.Allelementsapplytobothsteady-stateand

transientthermalanalyses.SOLID70alsocancompensateformasstransportheatflow

fromaconstantvelocityfield.

Table2.12-DSolidElements

ElementDimens.ShapeorCharacteristicDOFs

PLANE352-DTriangle,6-nodeTemperature(ateachnode)

PLANE552-DQuadrilateral,4-nodeTemperature(ateachnode)

PLANE752-DHarmonic,4-nodeTemperature(ateachnode)

PLANE772-DQuadrilateral,8-nodeTemperature(ateachnode)

PLANE782-DHarmonic,8-nodeTemperature(ateachnode)

Table2.23-DSolidElements

ElementDimens.ShapeorCharacteristicDOFs

SOLID703-DBrick,8-nodeTemperature(ateachnode)

SOLID873-DTetrahedron,10-nodeTemperature(ateachnode)

SOLID903-DBrick,20-nodeTemperature(ateachnode)

SOLID2783-DBrick,8-nodeTemperature(ateachnode)

SOLID2793-DBrick,20-nodeTemperature(ateachnode)

Table2.3RadiationLinkElements

ElementDimens.ShapeorCharacteristicDOFs

LINK312-Dor3-DLine,2-nodeTemperature(ateachnode)

朽木易折,金石可鏤。

Table2.4ConductingBarElements

ElementDimens.ShapeorCharacteristicDOFs

LINK333-DLine,2-nodeTemperature(ateachnode)

Table2.5ConvectionLinkElements

ElementDimens.ShapeorCharacteristicDOFs

LINK343-DLine,2-nodeTemperature(ateachnode)

Table2.6ShellElements

ElementDimens.ShapeorCharacteristicDOFs

SHELL1313-DQuadrilateral,4-nodeMultipletemperatures(ateachnode)

SHELL1323-DQuadrilateral,8-nodeMultipletemperatures(ateachnode)

Table2.7Coupled-FieldElements

ElementDimens.ShapeorCharacteristicDOFs

PLANE132-DThermal-structural,4-nodeTemperature,structural

displacement,electric

potential,magneticvector

potential

FLUID1163-DThermal-fluid,2-nodeor4-nodeTemperature,pressure

SOLID53-DThermal-structuralandTemperature,structural

thermal-electric,8-nodedisplacement,electric

potential,andmagnetic

scalarpotential

SOLID983-DThermal-structuralandTemperature,structural

thermal-electric,10-nodedisplacement,electric

potential,magneticvector

potential

LINK683-DThermal-electric,2-nodeTemperature,electric

potential

SHELL1573-DThermal-electric,4-nodeTemperature,electric

ElementDimens.ShapeorCharacteristicDOFs

potential

TARGE1692-DTargetsegmentelementTemperature,structural

displacement,electric

potential

TARGE1703-DTargetsegmentelementTemperature,structural

displacement,electric

potential

C0NTA1712-DSurface-to-surfacecontactelement,Temperature,structural

2-nodedisplacement,electric

potential

CONTA1722-DSurface-to-surfacecontactelement,Temperature,structural

3-nodedisplacement,electric

potential

|CONTA1733-DSurface-to-surfacecontactelement,Temperature,structural

4-nodedisplacement,electric

potential

CONTA1743-DSurface-to-surfacecontactelement,Temperature,structural

8-nodedisplacement,electric

potential

CONTA1752-D/3-DNode-to-surfacecontactelement,1Temperature,structural

nodedisplacement,electric

potential

PLANE2232-DThermal-structural,thermal-electric,Temperature,structural

structural-thermoelectric,anddisplacement,electric

thermal-piezoelectric,8-nodepotential

SOLID2263-DThermal-structural,thermal-electric,Temperature,structural

structural-thermoelectric,anddisplacement,electric

thermal-piezoelectric,20-nodepotential

SOLID2273-DThermal-structural,thermal-electric,Temperature,structural

structural-thermoelectric,anddisplacement,electric

thermal-piezoelectric,10-nodepotential

Table2.8SpecialtyElements

朽木易折,金石可鏤。

ElementDimens.ShapeorCharacteristicDOFs

MASS711-D,2-D,Mass,one-nodeTemperature

or3-D

COMBIN371-DControlelement,4-nodeTemperature,structural

displacement,rotation,pressure

SURF1512-DSurfaceeffectelement,Temperature

2-nodeto4-node

SURF1523-DSurfaceeffectelement,Temperature

4-nodeto9-node

MATRIX50[1]Matrixorradiationmatrix[1]

element,nofixed

geometry

INFIN9[212-DInfiniteboundary,2-nodeTemperature,magneticvector

potential

INFIN47[2]3-DInfiniteboundary,4-nodeTemperature,magneticvector

potential

INFIN1102-DInfiniteboundary,4or8Temperature,magneticvector

[2]nodespotential,electricpotential

INFIN1113-DInfiniteboundary,8or20Temperature,magneticscalar

[2]nodespotential,magneticvector

potential,electricpotential

COMBIN141-D,2-D,Combinationelement,Temperature,structural

or3-D2-nodedisplacement,rotation,pressure

COMBIN391-DCombinationelement,Temperature,structural

2-nodedisplacement,rotation,pressure

COMBIN401-DCombinationelement,Temperature,structural

2-nodedisplacement,rotation,pressure

1.Asdeterminedfromtheelementtypesincludedinthissuperelement.

2.Forinformationonmodelingtheeffectsoffar-fielddecay,seeFar-FieldElementsin

theLow-FrecueccpElectromagneticAnalysisGuide.

2.2.CommandsUsedinThermalAnalyses

ExampleofaSteady-StateTnermalAnalysis(CommandorBatchMethod)andPerforming

aSteady-StateThermalAnalysis(GUIMethod)showyouhowtoperformanexample

steady-statethermalanalysisviacommandandviaGUI,respectively.

Fordetailed,alphabetizeddescriptionsoftheANSYScommands,seetheCommand

Reference.

2.3.TasksinaThermalAnalysis

Theprocedureforperformingathermalanalysisinvolvesthreemaintasks:

?Buildthemodel.

?Applyloadsandobtainthesolution.

?Reviewtheresults.

Thenextfewtopicsdiscusswhatyoumustdotoperformthesesteps.First,thetext

presentsageneraldescriptionofthetasksrequiredtocompleteeachstep.Anexample

follows,basedonanactualsteady-statethermalanalysisofapipejunction.Theexample

walksyouthroughdoingtheanalysisbychoosingitemsfromANSYSGUImenus,then

showsyouhowtoperformthesameanalysisusingANSYScommands.

2.4.BuildingtheModel

Tobuildthemodel,youspecifythejobnameandatitleforyouranalysis.Then,youusethe

ANSYSpreprocessor(PREP7)todefinetheelementtypes,elementrealconstants,

materialproperties,andthemodelgeometry.(Thesetasksarecommontomostanalyses.

TheModelingandMeshingGuideexplainsthemindetail.)

Forathermalanalysis,youalsoneedtokeepthesepointsinmind:

?Tospecifyelementtypes,youuseeitherofthefollowing:

Command(s):ET

GUI:MainMenu>PreprocessorElementType>Add/Edit/Delete

?Todefineconstantmaterialproperties,useeitherofthefollowing:

朽木易折,金石可鏤。

Command(s):

MP

GJMainMenu>PreprocessorMaterialProps>MaterialModels>

Thermal

?Thematerialpropertiescanbeinputasnumericalvaluesorastableinputsforsome

elements.Tabularmaterialpropertiesarecalculatedbeforethefirstiteration(i.e.,

usinginitialvalues[IC]),SeetheMPcommandformoreinformationonwhich

elementscanusetabularmaterialproperties.

?Todefinetemperature-dependentproperties,youfirstneedtodefineatableof

temperatures.Then,definecorrespondingmaterialpropertyvalues.Todefinethe

temperaturestable,useeitherofthefollowing:

MPTEMPor

Command(s):

MPTGEN,andtodefinecorrespondingmaterialpropertyvalues,use

MPDATA.

MainMenu>PreprocessorMaterialProps>MaterialModels>

GUI:

Thermal

UsethesameGUImenuchoicesorthesamecommandstodefinetemperature-dependent

filmcoefficients(HF)forconvection.

Caution:Ifyouspecifytemperature-dependentfilmcoefficients(HF)inpolynomialform,

youshouldspecifyatemperaturetablebeforeyoudefineothermaterialshaving

constantproperties.

2.4.1.UsingtheSurfaceEffectElements

Youcanusethesurfaceeffectelements(SURF151,SURF152)toapplyheattransferfor

convection/radiationeffectsonafiniteelementmesh.Thesurfaceeffectelementsalso

allowyoutogeneratefilmcoefficientsandbulktemperaturesfromFLUID116elementsand

tomodelradiationtoapoint.Youcanalsotransferexternalloads(suchasfromCFX)to

ANSYSusingtheseelements.

Theguidelinesforusingsurfaceeffectelementsfollow:

1.Createandmeshthethermalregionasdescribedabove.

2.UseESURFtogeneratetheSURF151orSURF152elementsonthesurfacesofthe

finiteelementmesh.

ForSHELL131andSHELL132models,youmustuseSURF152.SetKEYOPT(11)=

1forthetoplayerandKEYOPT(11)=2forthebotomlayer.

ForFLUID116models,theSURF151andSURF152elementscanusethesingle

extranodeoption(KEYOPT(5)=1,KEYOPT(6)=0)togetthebulktemperature

fromaFLUID116element(KEYOPT(2)=1).

SURF151andSURF152elementscanalsobeusedtodefinefilmeffectivenessona

convectionsurface.Formoreinformationonfilmeffectiveness,seeConductionand

ConvectionintheTheoryReferencefortheMechanicalAPDLandMechanical

Applications.

Forgreateraccuracy,theSURF151andSURF152elementscanusetheoptionof

twoextranodes(KEYOPT(5)-2,KEYOPT(6)-0)togetbulktemperaturesfrom

FLUID116elements(KEYOPT(2)=1).Fortwoextranodes,youmustset

KEYOPT(5)to0beforeissuingtheESURFcommand.AfterissuingESURF,youset

KEYOPT⑸to2andissuetheMSTOLEcommandtoaddthetwoextranodestothe

SURF151orSURF152elements.

ThefollowingmethodsareavailableformappingtheFLUID116nodestothe

SURF151orSURF152elementswithMSTOLE.

?Minimumcentroiddistancemethod:ThecentroidsoftheFLUID116and

SURF151orSURF152elementsaredeterminedandthenodesofeach

FLUID116elerrentaremappedtotheSURF151orSURF152elementthat

hastheminimumcentroiddistance.Theminimumcentroiddistancemethod

willalwayswork,butitmightnotgivethemostaccurateresults.

Figure2.1MinimumCentroidDistanceMethod

SURF151

orSURF152

Elements\

FLUID116

ElementsXXX

朽木易折,金石可鏤。

?Projectionmethod:ThenodesofaFLUID116elementaremappedtoa

SURF151orSURF152elementiftheprojectionfromthecentroidofthe

SURF151orSURF152elementtotheFLUID116elementintersectsthe

FLUID116elementperpendicularly.AerrormessageisissuedIfaprojection

fromaSURF151orSURF152elementdoesnotintersectanyFLUID116

elementperpendicularly.

Figure2.2ProjectionMethod

SURF151

orSURF152

Elements

i

i

FLUID1161idTT

ElementsX?XX

?Hybridmethod:Thehybridmethodisacombinationoftheprojectionand

minimumcentroiddistancemethods.Inthismethod,theprojectionmethodis

triedfirst.Iftheprojectionmethodfailstomapcorrectly,aswitchismadeto

theminimumcentroiddistancemethod.Anynecessaryswitchingisdoneona

per-elementbasis.

IftheFLUID116elementlengthsvarysignificantlyasshowninthefollowingtwo

figures,theprojectionmethodisbetterthantheminimumcentroiddistancemethod.

Theminimumcentroiddistancemethodwouldmapthenodesoftheshorter

FLUID116elementtotheSURF151orSURF152element,buttheprojectionmethod

wouldmapthenodesofthelongerFLUID116elementtotheSURF151orSURF152

element.

Figure2.3VaryingFLUID116ElementLength-MinimumCentroidDistance

Method

Figure2.4VaryingFLUID116ElementLength-ProjectionMethod

SURF151

orSURF152--------------------------------------------*----------

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論