2025高考數(shù)學(xué)二輪復(fù)習(xí)-專題12數(shù)列-專項(xiàng)訓(xùn)練【含答案】_第1頁
2025高考數(shù)學(xué)二輪復(fù)習(xí)-專題12數(shù)列-專項(xiàng)訓(xùn)練【含答案】_第2頁
2025高考數(shù)學(xué)二輪復(fù)習(xí)-專題12數(shù)列-專項(xiàng)訓(xùn)練【含答案】_第3頁
2025高考數(shù)學(xué)二輪復(fù)習(xí)-專題12數(shù)列-專項(xiàng)訓(xùn)練【含答案】_第4頁
2025高考數(shù)學(xué)二輪復(fù)習(xí)-專題12數(shù)列-專項(xiàng)訓(xùn)練【含答案】_第5頁
已閱讀5頁,還剩81頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2025高考數(shù)學(xué)二輪復(fù)習(xí)-專題12數(shù)列-專項(xiàng)訓(xùn)練考點(diǎn)五年考情(2020-2024)命題趨勢(shì)考點(diǎn)01等差等比數(shù)列應(yīng)用2023天津甲乙Ⅱ卷2022乙卷2020北京卷等差等比數(shù)列及求和在高考中主要考查基本量的基本運(yùn)算,是常規(guī)求和方法發(fā)的基本應(yīng)用。包括:錯(cuò)位相減求和,奇偶性求和,列項(xiàng)求和等??键c(diǎn)02數(shù)列求和2024甲天津卷2023ⅠⅡ甲乙卷2022甲卷2021ⅠⅡ乙卷2020浙江ⅠⅡ卷考點(diǎn)03數(shù)列情景類問題2024北京2023北京2021北京Ⅰ卷2020Ⅱ卷情景化與新定義是高考的一個(gè)新的考點(diǎn),一般采用學(xué)過的知識(shí)去解決新定義問題,因加以重視,是高考的一個(gè)方向,并且作為壓軸題的可能性比較大,難度大??键c(diǎn)04數(shù)列新定義問題2024Ⅰ北京卷2023北京卷考點(diǎn)05數(shù)列與其他知識(shí)點(diǎn)交匯及綜合問題2024Ⅱ卷2023北京天津乙Ⅱ卷2022北京浙江ⅠⅡ卷2021甲浙江2020浙江Ⅱ卷知識(shí)的綜合是未來高考的一個(gè)重要方向,主要是數(shù)列與統(tǒng)計(jì)概率相結(jié)合,數(shù)列作為一個(gè)工具與解析幾何,函數(shù)結(jié)合等,屬于中等難度??键c(diǎn)01等差等比數(shù)列應(yīng)用一選擇題1.(2020北京高考·第8題)在等差數(shù)列中,,.記,則數(shù)列().A.有最大項(xiàng),有最小項(xiàng) B.有最大項(xiàng),無最小項(xiàng)C.無最大項(xiàng),有最小項(xiàng) D.無最大項(xiàng),無最小項(xiàng)2.(2023年天津卷·第6題)已知為等比數(shù)列,為數(shù)列的前項(xiàng)和,,則的值為()A.3 B.18 C.54 D.1523.(2023年新課標(biāo)全國(guó)Ⅱ卷·第8題)記為等比數(shù)列的前n項(xiàng)和,若,,則 ().A.120 B.85 C. D.4.(2023年全國(guó)甲卷理科·第5題)設(shè)等比數(shù)列的各項(xiàng)均為正數(shù),前n項(xiàng)和,若,,則 ()A. B. C.15 D.405.(2022年高考全國(guó)乙卷數(shù)學(xué)(理)·第8題)已知等比數(shù)列的前3項(xiàng)和為168,,則 ()A.14 B.12 C.6 D.3二、填空題3.(2023年全國(guó)乙卷理科·第15題)已知為等比數(shù)列,,,則______.考點(diǎn)02數(shù)列求和一選擇題1.(2024·全國(guó)·高考甲卷文)已知等差數(shù)列的前項(xiàng)和為,若,則(

)A. B. C.1 D.2.(2024·全國(guó)·甲卷)記為等差數(shù)列的前項(xiàng)和,已知,,則(

)A. B. C. D.3.(2020年高考課標(biāo)Ⅱ卷理科·第6題)數(shù)列中,,,若,則 ()A.2 B.3 C.4 D.5二、填空題4.(2020年浙江省高考數(shù)學(xué)試卷·第11題)已知數(shù)列{an}滿足,則S3=________.5.(2020年新高考全國(guó)卷Ⅱ數(shù)學(xué)(海南)·第15題)將數(shù)列{2n–1}與{3n–2}的公共項(xiàng)從小到大排列得到數(shù)列{an},則{an}的前n項(xiàng)和為________.三解答題:6.(2023年新課標(biāo)全國(guó)Ⅱ卷·第18題)已知為等差數(shù)列,,記,分別為數(shù)列,前n項(xiàng)和,,.(1)求的通項(xiàng)公式;(2)證明:當(dāng)時(shí),.7.(2021年新高考Ⅰ卷·第17題)已知數(shù)列滿足,(1)記,寫出,,并求數(shù)列的通項(xiàng)公式;(2)求的前20項(xiàng)和.8.(2021年高考全國(guó)乙卷理科·第19題)記為數(shù)列的前n項(xiàng)和,為數(shù)列的前n項(xiàng)積,已知.(1)證明:數(shù)列是等差數(shù)列;(2)求的通項(xiàng)公式.9.(2023年新課標(biāo)全國(guó)Ⅰ卷·第20題)設(shè)等差數(shù)列的公差為,且.令,記分別為數(shù)列的前項(xiàng)和.(1)若,求的通項(xiàng)公式;(2)若為等差數(shù)列,且,求.10.(2022年高考全國(guó)甲卷數(shù)學(xué)(理)·第17題)記為數(shù)列的前n項(xiàng)和.已知.(1)證明:是等差數(shù)列;(2)若成等比數(shù)列,求的最小值.11.(2021年新高考全國(guó)Ⅱ卷·第17題)記是公差不為0的等差數(shù)列的前n項(xiàng)和,若.(1)求數(shù)列的通項(xiàng)公式;(2)求使成立的n的最小值.12(2023年全國(guó)乙卷)1.記為等差數(shù)列的前項(xiàng)和,已知.(1)求的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.13.(2020年新高考全國(guó)Ⅰ卷(山東)·第18題)已知公比大于的等比數(shù)列滿足.(1)求的通項(xiàng)公式;(2)記為在區(qū)間中的項(xiàng)的個(gè)數(shù),求數(shù)列的前項(xiàng)和.14.(2020年新高考全國(guó)卷Ⅱ數(shù)學(xué)(海南)·第18題)已知公比大于的等比數(shù)列滿足.(1)求通項(xiàng)公式;(2)求.15.(2023年全國(guó)甲卷理科·第17題)設(shè)為數(shù)列的前n項(xiàng)和,已知.(1)求的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.16.(2020天津高考·第19題)已知為等差數(shù)列,為等比數(shù)列,.(Ⅰ)求和的通項(xiàng)公式;(Ⅱ)記的前項(xiàng)和為,求證:;(Ⅲ)對(duì)任意的正整數(shù),設(shè)求數(shù)列的前項(xiàng)和.17(2024·天津·高考真題)已知數(shù)列是公比大于0的等比數(shù)列.其前項(xiàng)和為.若.(1)求數(shù)列前項(xiàng)和;(2)設(shè),.(ⅰ)當(dāng)時(shí),求證:;(ⅱ)求.考點(diǎn)03數(shù)列情景類題目一、選擇題1.(2020年高考課標(biāo)Ⅱ卷理科)北京天壇的圜丘壇為古代祭天的場(chǎng)所,分上、中、下三層,上層中心有一塊圓形石板(稱為天心石),環(huán)繞天心石砌9塊扇面形石板構(gòu)成第一環(huán),向外每環(huán)依次增加9塊,下一層的第一環(huán)比上一層的最后一環(huán)多9塊,向外每環(huán)依次也增加9塊,已知每層環(huán)數(shù)相同,且下層比中層多729塊,則三層共有扇面形石板(不含天心石) () A.3699塊 B.3474塊 C.3402塊 D.3339塊2.(2022新高考全國(guó)II卷·第3題)圖1是中國(guó)古代建筑中的舉架結(jié)構(gòu),是桁,相鄰桁的水平距離稱為步,垂直距離稱為舉,圖2是某古代建筑屋頂截面的示意圖.其中是舉,是相等的步,相鄰桁的舉步之比分別為.已知成公差為0.1的等差數(shù)列,且直線的斜率為0.725,則 () ()A.0.75 B.0.8 C.0.85 D.0.93.(2021高考北京·第6題)《中國(guó)共產(chǎn)黨黨旗黨徽制作和使用的若干規(guī)定》指出,中國(guó)共產(chǎn)黨黨旗為旗面綴有金黃色黨徽?qǐng)D案的紅旗,通用規(guī)格有五種.這五種規(guī)格黨旗的長(zhǎng)(單位:cm)成等差數(shù)列,對(duì)應(yīng)的寬為(單位:cm),且長(zhǎng)與寬之比都相等,已知,,,則A.64 B.96 C.128 D.160二、填空題4.(2023年北京卷·第14題)我國(guó)度量衡的發(fā)展有著悠久的歷史,戰(zhàn)國(guó)時(shí)期就已經(jīng)出現(xiàn)了類似于砝碼的、用來測(cè)量物體質(zhì)量的“環(huán)權(quán)”.已知9枚環(huán)權(quán)的質(zhì)量(單位:銖)從小到大構(gòu)成項(xiàng)數(shù)為9的數(shù)列,該數(shù)列的前3項(xiàng)成等差數(shù)列,后7項(xiàng)成等比數(shù)列,且,則___________;數(shù)列所有項(xiàng)的和為____________.5.(2021年新高考Ⅰ卷·第16題)某校學(xué)生在研究民間剪紙藝術(shù)時(shí),發(fā)現(xiàn)剪紙時(shí)經(jīng)常會(huì)沿紙的某條對(duì)稱軸把紙對(duì)折,規(guī)格為的長(zhǎng)方形紙,對(duì)折1次共可以得到,兩種規(guī)格的圖形,它們的面積之和,對(duì)折2次共可以得到,,三種規(guī)格的圖形,它們的面積之和,以此類推,則對(duì)折4次共可以得到不同規(guī)格圖形的種數(shù)為______;如果對(duì)折次,那么______.6(2024·北京·高考真題)設(shè)與是兩個(gè)不同的無窮數(shù)列,且都不是常數(shù)列.記集合,給出下列4個(gè)結(jié)論:①若與均為等差數(shù)列,則M中最多有1個(gè)元素;②若與均為等比數(shù)列,則M中最多有2個(gè)元素;③若為等差數(shù)列,為等比數(shù)列,則M中最多有3個(gè)元素;④若為遞增數(shù)列,為遞減數(shù)列,則M中最多有1個(gè)元素.其中正確結(jié)論的序號(hào)是.考點(diǎn)04數(shù)列新定義問題1(2024·全國(guó)·高考Ⅰ卷)設(shè)m為正整數(shù),數(shù)列是公差不為0的等差數(shù)列,若從中刪去兩項(xiàng)和后剩余的項(xiàng)可被平均分為組,且每組的4個(gè)數(shù)都能構(gòu)成等差數(shù)列,則稱數(shù)列是可分?jǐn)?shù)列.(1)寫出所有的,,使數(shù)列是可分?jǐn)?shù)列;(2)當(dāng)時(shí),證明:數(shù)列是可分?jǐn)?shù)列;(3)從中一次任取兩個(gè)數(shù)和,記數(shù)列是可分?jǐn)?shù)列的概率為,證明:.2(2024·北京·高考真題)已知集合.給定數(shù)列,和序列,其中,對(duì)數(shù)列進(jìn)行如下變換:將的第項(xiàng)均加1,其余項(xiàng)不變,得到的數(shù)列記作;將的第項(xiàng)均加1,其余項(xiàng)不變,得到數(shù)列記作;……;以此類推,得到,簡(jiǎn)記為.(1)給定數(shù)列和序列,寫出;(2)是否存在序列,使得為,若存在,寫出一個(gè)符合條件的;若不存在,請(qǐng)說明理由;(3)若數(shù)列的各項(xiàng)均為正整數(shù),且為偶數(shù),求證:“存在序列,使得的各項(xiàng)都相等”的充要條件為“”.3(2023年北京卷·第21題)已知數(shù)列的項(xiàng)數(shù)均為m,且的前n項(xiàng)和分別為,并規(guī)定.對(duì)于,定義,其中,表示數(shù)集M中最大的數(shù).(1)若,求的值;(2)若,且,求;(3)證明:存在,滿足使得.考點(diǎn)05數(shù)列與其他知識(shí)點(diǎn)交匯及綜合問題一、選擇題1.(2023年北京卷·第10題)已知數(shù)列滿足,則 ()A.當(dāng)時(shí),為遞減數(shù)列,且存在常數(shù),使得恒成立B.當(dāng)時(shí),為遞增數(shù)列,且存在常數(shù),使得恒成立C.當(dāng)時(shí),為遞減數(shù)列,且存在常數(shù),使得恒成立D.當(dāng)時(shí),為遞增數(shù)列,且存在常數(shù),使得恒成立2.(2020年浙江省高考數(shù)學(xué)試卷·第7題)已知等差數(shù)列{an}的前n項(xiàng)和Sn,公差d≠0,.記b1=S2,bn+1=Sn+2–S2n,,下列等式不可能成立的是 ()A.2a4=a2+a6 B.2b4=b2+b6 C. D.3.(2022高考北京卷·第6題)設(shè)是公差不為0的無窮等差數(shù)列,則“為遞增數(shù)列”是“存在正整數(shù),當(dāng)時(shí),”的 ()A.充分而不必要條件 B.必要而不充分條件C充分必要條件D.既不充分也不必要條件4.(2020年高考課標(biāo)Ⅱ卷理科·第11題)0-1周期序列在通信技術(shù)中有著重要應(yīng)用.若序列滿足,且存在正整數(shù),使得成立,則稱其為0-1周期序列,并稱滿足的最小正整數(shù)為這個(gè)序列的周期.對(duì)于周期為的0-1序列,是描述其性質(zhì)的重要指標(biāo),下列周期為5的0-1序列中,滿足的序列是 ()A. B. C. D.5.(2023年全國(guó)乙卷理科·第10題)已知等差數(shù)列的公差為,集合,若,則 ()A.-1 B. C.0 D.二解答題6(2024·全國(guó)·高考Ⅱ卷)已知雙曲線,點(diǎn)在上,為常數(shù),.按照如下方式依次構(gòu)造點(diǎn):過作斜率為的直線與的左支交于點(diǎn),令為關(guān)于軸的對(duì)稱點(diǎn),記的坐標(biāo)為.(1)若,求;(2)證明:數(shù)列是公比為的等比數(shù)列;(3)設(shè)為的面積,證明:對(duì)任意正整數(shù),.7.(2023年天津卷·第19題)已知是等差數(shù)列,.(1)求的通項(xiàng)公式和.(2)已知為等比數(shù)列,對(duì)于任意,若,則,(Ⅰ)當(dāng)時(shí),求證:;(Ⅱ)求的通項(xiàng)公式及其前項(xiàng)和.8.(2022新高考全國(guó)I卷·第17題)記為數(shù)列的前n項(xiàng)和,已知是公差為的等差數(shù)列.(1)求的通項(xiàng)公式;(2)證明:.9.(2020年浙江省高考數(shù)學(xué)試卷·第20題)已知數(shù)列{an},{bn},{cn}中,.(Ⅰ)若數(shù)列{bn}為等比數(shù)列,且公比,且,求q與an的通項(xiàng)公式;(Ⅱ)若數(shù)列{bn}為等差數(shù)列,且公差,證明:.10(2023年新高考Ⅱ卷)2.甲、乙兩人投籃,每次由其中一人投籃,規(guī)則如下:若命中則此人繼續(xù)投籃,若末命中則換為對(duì)方投籃.無論之前投籃情況如何,甲每次投籃的命中率均為0.6,乙每次投籃的命中率均為0.8.由抽簽確定第1次投籃的人選,第1次投籃的人是甲、乙的概率各為0.5.(1)求第2次投籃的人是乙的概率;(2)求第次投籃的人是甲的概率;(3)已知:若隨機(jī)變量服從兩點(diǎn)分布,且,則.記前次(即從第1次到第次投籃)中甲投籃的次數(shù)為,求.11.(2022高考北京卷·第21題)已知為有窮整數(shù)數(shù)列.給定正整數(shù)m,若對(duì)任意的,在Q中存在,使得,則稱Q為連續(xù)可表數(shù)列.(1)判斷是否為連續(xù)可表數(shù)列?是否為連續(xù)可表數(shù)列?說明理由;(2)若為連續(xù)可表數(shù)列,求證:k的最小值為4;(3)若為連續(xù)可表數(shù)列,且,求證:.12.(2021年高考浙江卷·第20題)已知數(shù)列前n項(xiàng)和為,,且.(1)求數(shù)列通項(xiàng);(2)設(shè)數(shù)列滿足,記的前n項(xiàng)和為,若對(duì)任意恒成立,求的范圍.13.(2022新高考全國(guó)II卷·第17題)已知為等差數(shù)列,是公比為2的等比數(shù)列,且.(1)證明:;(2)求集合中元素個(gè)數(shù).14.(2022年浙江省高考數(shù)學(xué)試題·第20題)已知等差數(shù)列的首項(xiàng),公差.記的前n項(xiàng)和為.(1)若,求;(2)若對(duì)于每個(gè),存在實(shí)數(shù),使成等比數(shù)列,求d的取值范圍.15.(2021年高考全國(guó)甲卷理科·第18題)已知數(shù)列的各項(xiàng)均為正數(shù),記為的前n項(xiàng)和,從下面①②③中選取兩個(gè)作為條件,證明另外一個(gè)成立.①數(shù)列是等差數(shù)列:②數(shù)列是等差數(shù)列;③.注:若選擇不同的組合分別解答,則按第一個(gè)解答計(jì)分參考答案與詳細(xì)解析考點(diǎn)五年考情(2020-2024)命題趨勢(shì)考點(diǎn)01等差等比數(shù)列應(yīng)用2023天津甲乙Ⅱ卷2022乙卷2020北京卷等差等比數(shù)列及求和在高考中主要考查基本量的基本運(yùn)算,是常規(guī)求和方法發(fā)的基本應(yīng)用。包括:錯(cuò)位相減求和,奇偶性求和,列項(xiàng)求和等??键c(diǎn)02數(shù)列求和2024甲天津卷2023ⅠⅡ甲乙卷2022甲卷2021ⅠⅡ乙卷2020浙江ⅠⅡ卷考點(diǎn)03數(shù)列情景類問題2024北京2023北京2021北京Ⅰ卷2020Ⅱ卷情景化與新定義是高考的一個(gè)新的考點(diǎn),一般采用學(xué)過的知識(shí)去解決新定義問題,因加以重視,是高考的一個(gè)方向,并且作為壓軸題的可能性比較大,難度大??键c(diǎn)04數(shù)列新定義問題2024Ⅰ北京卷2023北京卷考點(diǎn)05數(shù)列與其他知識(shí)點(diǎn)交匯及綜合問題2024Ⅱ卷2023北京天津乙Ⅱ卷2022北京浙江ⅠⅡ卷2021甲浙江2020浙江Ⅱ卷知識(shí)的綜合是未來高考的一個(gè)重要方向,主要是數(shù)列與統(tǒng)計(jì)概率相結(jié)合,數(shù)列作為一個(gè)工具與解析幾何,函數(shù)結(jié)合等,屬于中等難度??键c(diǎn)01等差等比數(shù)列應(yīng)用一選擇題1.(2020北京高考·第8題)在等差數(shù)列中,,.記,則數(shù)列().A.有最大項(xiàng),有最小項(xiàng) B.有最大項(xiàng),無最小項(xiàng)C.無最大項(xiàng),有最小項(xiàng) D.無最大項(xiàng),無最小項(xiàng)【答案】B【解析】由題意可知,等差數(shù)列的公差,則其通項(xiàng)公式為:,注意到,且由可知,由可知數(shù)列不存在最小項(xiàng),由于,故數(shù)列中的正項(xiàng)只有有限項(xiàng):,.故數(shù)列中存在最大項(xiàng),且最大項(xiàng)為.故選:B.2.(2023年天津卷·第6題)已知為等比數(shù)列,為數(shù)列的前項(xiàng)和,,則的值為 ()A.3 B.18 C.54 D.152【答案】C解析:由題意可得:當(dāng)時(shí),,即,①當(dāng)時(shí),,即,②聯(lián)立①②可得,則.故選:C.3.(2023年新課標(biāo)全國(guó)Ⅱ卷·第8題)記為等比數(shù)列的前n項(xiàng)和,若,,則 ().A.120 B.85 C. D.【答案】C解析:方法一:設(shè)等比數(shù)列的公比為,首項(xiàng)為,若,則,與題意不符,所以;由,可得,,①,由①可得,,解得:,所以.故選:C.方法二:設(shè)等比數(shù)列的公比為,因?yàn)椋?,所以,否則,從而,成等比數(shù)列,所以有,,解得:或,當(dāng)時(shí),,即為,易知,,即;當(dāng)時(shí),,與矛盾,舍去.故選:C.4.(2023年全國(guó)甲卷理科·第5題)設(shè)等比數(shù)列的各項(xiàng)均為正數(shù),前n項(xiàng)和,若,,則 ()A. B. C.15 D.40【答案】C解析:由題知,即,即,即.由題知,所以.所以.故選:C.5.(2022年高考全國(guó)乙卷數(shù)學(xué)(理)·第8題)已知等比數(shù)列的前3項(xiàng)和為168,,則 ()A.14 B.12 C.6 D.3【答案】D解析:設(shè)等比數(shù)列的公比為,若,則,與題意矛盾,所以,則,解得,所以.故選:D.二、填空題3.(2023年全國(guó)乙卷理科·第15題)已知為等比數(shù)列,,,則______.【答案】解析:設(shè)的公比為,則,顯然,則,即,則,因?yàn)?,則,則,則,則,故答案為:.考點(diǎn)02數(shù)列求和一選擇題1.(2024·全國(guó)·高考甲卷文)已知等差數(shù)列的前項(xiàng)和為,若,則(

)A. B. C.1 D.【答案】D【分析】可以根據(jù)等差數(shù)列的基本量,即將題目條件全轉(zhuǎn)化成和來處理,亦可用等差數(shù)列的性質(zhì)進(jìn)行處理,或者特殊值法處理.【詳解】方法一:利用等差數(shù)列的基本量由,根據(jù)等差數(shù)列的求和公式,,又.故選:D方法二:利用等差數(shù)列的性質(zhì)根據(jù)等差數(shù)列的性質(zhì),,由,根據(jù)等差數(shù)列的求和公式,,故.故選:D方法三:特殊值法不妨取等差數(shù)列公差,則,則.故選:D2.(2024·全國(guó)·甲卷)記為等差數(shù)列的前項(xiàng)和,已知,,則(

)A. B. C. D.【答案】B【分析】由結(jié)合等差中項(xiàng)的性質(zhì)可得,即可計(jì)算出公差,即可得的值.【詳解】由,則,則等差數(shù)列的公差,故.故選:B.3.(2020年高考課標(biāo)Ⅱ卷理科·第6題)數(shù)列中,,,若,則 ()A.2 B.3 C.4 D.5【答案】C解析:在等式中,令,可得,,所以,數(shù)列是以為首項(xiàng),以為公比的等比數(shù)列,則,,,則,解得.故選:C.【點(diǎn)睛】本題考查利用等比數(shù)列求和求參數(shù)的值,解答的關(guān)鍵就是求出數(shù)列的通項(xiàng)公式,考查計(jì)算能力,屬于中等題.二、填空題4.(2020年浙江省高考數(shù)學(xué)試卷·第11題)已知數(shù)列{an}滿足,則S3=________.【答案】10解析:因?yàn)?,所以.即?.(2020年新高考全國(guó)卷Ⅱ數(shù)學(xué)(海南)·第15題)將數(shù)列{2n–1}與{3n–2}的公共項(xiàng)從小到大排列得到數(shù)列{an},則{an}的前n項(xiàng)和為________.【答案】解析:因?yàn)閿?shù)列是以1為首項(xiàng),以2為公差的等差數(shù)列,數(shù)列是以1首項(xiàng),以3為公差的等差數(shù)列,所以這兩個(gè)數(shù)列的公共項(xiàng)所構(gòu)成的新數(shù)列是以1為首項(xiàng),以6為公差的等差數(shù)列,所以的前項(xiàng)和為,故答案為:.三解答題:6.(2023年新課標(biāo)全國(guó)Ⅱ卷·第18題)已知為等差數(shù)列,,記,分別為數(shù)列,前n項(xiàng)和,,.(1)求的通項(xiàng)公式;(2)證明:當(dāng)時(shí),.【答案】(1);(2)證明見解析.解析:(1)設(shè)等差數(shù)列的公差為,而,則,于是,解得,,所以數(shù)列的通項(xiàng)公式是.(2)方法1:由(1)知,,,當(dāng)為偶數(shù)時(shí),,,當(dāng)時(shí),,因此,當(dāng)為奇數(shù)時(shí),,當(dāng)時(shí),,因此,所以當(dāng)時(shí),.方法2:由(1)知,,,當(dāng)為偶數(shù)時(shí),,當(dāng)時(shí),,因此,當(dāng)為奇數(shù)時(shí),若,則,顯然滿足上式,因此當(dāng)為奇數(shù)時(shí),,當(dāng)時(shí),,因此,所以當(dāng)時(shí),.7.(2021年新高考Ⅰ卷·第17題)已知數(shù)列滿足,(1)記,寫出,,并求數(shù)列的通項(xiàng)公式;(2)求的前20項(xiàng)和.【答案】;.【解析】(1)由題設(shè)可得又,,故即即所以為等差數(shù)列,故.(2)設(shè)的前項(xiàng)和為,則,因?yàn)椋裕?.(2021年高考全國(guó)乙卷理科·第19題)記為數(shù)列的前n項(xiàng)和,為數(shù)列的前n項(xiàng)積,已知.(1)證明:數(shù)列是等差數(shù)列;(2)求的通項(xiàng)公式.【答案】(1)證明見解析;(2).解析:(1)由已知得,且,,取,由得,由于為數(shù)列的前n項(xiàng)積,所以,所以,所以,由于所以,即,其中所以數(shù)列是以為首項(xiàng),以為公差等差數(shù)列;(2)由(1)可得,數(shù)列是以為首項(xiàng),以為公差的等差數(shù)列,,,當(dāng)n=1時(shí),,當(dāng)n≥2時(shí),,顯然對(duì)于n=1不成立,∴.9.(2023年新課標(biāo)全國(guó)Ⅰ卷·第20題)設(shè)等差數(shù)列的公差為,且.令,記分別為數(shù)列的前項(xiàng)和.(1)若,求的通項(xiàng)公式;(2)若為等差數(shù)列,且,求.【答案】(1)(2)解析:(1),,解得,,又,,即,解得或(舍去),.(2)為等差數(shù)列,,即,,即,解得或,,,又,由等差數(shù)列性質(zhì)知,,即,,即,解得或(舍去)當(dāng)時(shí),,解得,與矛盾,無解;當(dāng)時(shí),,解得.綜上,.10.(2022年高考全國(guó)甲卷數(shù)學(xué)(理)·第17題)記為數(shù)列的前n項(xiàng)和.已知.(1)證明:是等差數(shù)列;(2)若成等比數(shù)列,求的最小值.【答案】(1)證明見解析;(2).【解析】(1)解:因?yàn)?,即①,?dāng)時(shí),②,①②得,,即,即,所以,且,所以是以為公差的等差數(shù)列.(2)解:由(1)可得,,,又,,成等比數(shù)列,所以,即,解得,所以,所以,所以,當(dāng)或時(shí).11.(2021年新高考全國(guó)Ⅱ卷·第17題)記是公差不為0的等差數(shù)列的前n項(xiàng)和,若.(1)求數(shù)列的通項(xiàng)公式;(2)求使成立的n的最小值.【答案】【解析】(1)由等差數(shù)列的性質(zhì)可得:,則:,設(shè)等差數(shù)列的公差為,從而有:,,從而:,由于公差不為零,故:,數(shù)列的通項(xiàng)公式為:.(2)由數(shù)列的通項(xiàng)公式可得:,則:,則不等式即:,整理可得:,解得:或,又為正整數(shù),故的最小值為.12(2023年全國(guó)乙卷)1.記為等差數(shù)列的前項(xiàng)和,已知.(1)求的通項(xiàng)公式;(2)求數(shù)列的前項(xiàng)和.【答案】(1)(2)【詳解】(1)設(shè)等差數(shù)列的公差為,由題意可得,即,解得,所以,(2)因?yàn)?,令,解得,且,?dāng)時(shí),則,可得;當(dāng)時(shí),則,可得;綜上所述:.13.(2020年新高考全國(guó)Ⅰ卷(山東)·第18題)已知公比大于的等比數(shù)列滿足.(1)求的通項(xiàng)公式;(2)記為在區(qū)間中的項(xiàng)的個(gè)數(shù),求數(shù)列的前項(xiàng)和.【答案】(1);(2).解析:(1)由于數(shù)列是公比大于的等比數(shù)列,設(shè)首項(xiàng)為,公比為,依題意有,解得解得,或(舍),所以,所以數(shù)列的通項(xiàng)公式為.(2)由于,所以對(duì)應(yīng)的區(qū)間為:,則;對(duì)應(yīng)的區(qū)間分別為:,則,即有個(gè);對(duì)應(yīng)的區(qū)間分別為:,則,即有個(gè);對(duì)應(yīng)的區(qū)間分別為:,則,即有個(gè);對(duì)應(yīng)的區(qū)間分別為:,則,即有個(gè);對(duì)應(yīng)的區(qū)間分別為:,則,即有個(gè);對(duì)應(yīng)的區(qū)間分別為:,則,即有個(gè).所以.14.(2020年新高考全國(guó)卷Ⅱ數(shù)學(xué)(海南)·第18題)已知公比大于的等比數(shù)列滿足.(1)求通項(xiàng)公式;(2)求.【答案】(1);(2)解析:(1)設(shè)等比數(shù)列的公比為q(q>1),則,整理可得:,,數(shù)列的通項(xiàng)公式為:.(2)由于:,故:.15.(2023年全國(guó)甲卷理科·第17題)設(shè)為數(shù)列的前n項(xiàng)和,已知.(1)求的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和.【答案】(1)(2)解析:(1)因?yàn)?,?dāng)時(shí),,即;當(dāng)時(shí),,即,當(dāng)時(shí),,所以,化簡(jiǎn)得:,當(dāng)時(shí),,即,當(dāng)時(shí)都滿足上式,所以.(2)因?yàn)椋?,,兩式相減得,,,即,.16.(2020天津高考·第19題)已知為等差數(shù)列,為等比數(shù)列,.(Ⅰ)求和的通項(xiàng)公式;(Ⅱ)記的前項(xiàng)和為,求證:;(Ⅲ)對(duì)任意的正整數(shù),設(shè)求數(shù)列的前項(xiàng)和.【答案】(Ⅰ),;(Ⅱ)證明見解析;(Ⅲ).【解析】(Ⅰ)設(shè)等差數(shù)列的公差為,等比數(shù)列的公比為.由,,可得.從而的通項(xiàng)公式為.由,又,可得,解得,從而的通項(xiàng)公式為.(Ⅱ)證明:由(Ⅰ)可得,故,,從而,所以.(Ⅲ)當(dāng)為奇數(shù)時(shí),,當(dāng)為偶數(shù)時(shí),,對(duì)任意的正整數(shù),有,和①由①得②由①②得,由于,從而得:.因此,.所以,數(shù)列的前項(xiàng)和為.17(2024·天津·高考真題)已知數(shù)列是公比大于0的等比數(shù)列.其前項(xiàng)和為.若.(1)求數(shù)列前項(xiàng)和;(2)設(shè),.(ⅰ)當(dāng)時(shí),求證:;(ⅱ)求.【答案】(1)(2)①證明見詳解;②【詳解】(1)設(shè)等比數(shù)列的公比為,因?yàn)椋?,可得,整理得,解得或(舍去),所?(2)(i)由(1)可知,且,當(dāng)時(shí),則,即可知,,可得,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,所以;(ii)由(1)可知:,若,則;若,則,當(dāng)時(shí),,可知為等差數(shù)列,可得,所以,且,符合上式,綜上所述:.考點(diǎn)03數(shù)列情景類題目一、選擇題1.(2020年高考課標(biāo)Ⅱ卷理科)北京天壇的圜丘壇為古代祭天的場(chǎng)所,分上、中、下三層,上層中心有一塊圓形石板(稱為天心石),環(huán)繞天心石砌9塊扇面形石板構(gòu)成第一環(huán),向外每環(huán)依次增加9塊,下一層的第一環(huán)比上一層的最后一環(huán)多9塊,向外每環(huán)依次也增加9塊,已知每層環(huán)數(shù)相同,且下層比中層多729塊,則三層共有扇面形石板(不含天心石) () ()A.3699塊 B.3474塊 C.3402塊 D.3339塊【答案】C解析:設(shè)第n環(huán)天石心塊數(shù)為,第一層共有n環(huán),則是以9為首項(xiàng),9為公差的等差數(shù)列,,設(shè)為的前n項(xiàng)和,則第一層、第二層、第三層的塊數(shù)分別為,因?yàn)橄聦颖戎袑佣?29塊,所以,即即,解得,所以.故選:C2.(2022新高考全國(guó)II卷·第3題)圖1是中國(guó)古代建筑中的舉架結(jié)構(gòu),是桁,相鄰桁的水平距離稱為步,垂直距離稱為舉,圖2是某古代建筑屋頂截面的示意圖.其中是舉,是相等的步,相鄰桁的舉步之比分別為.已知成公差為0.1的等差數(shù)列,且直線的斜率為0.725,則 () ()A.0.75 B.0.8 C.0.85 D.0.9【答案】D解析:設(shè),則,依題意,有,且,所以,故.故選D.3.(2021高考北京·第6題)《中國(guó)共產(chǎn)黨黨旗黨徽制作和使用的若干規(guī)定》指出,中國(guó)共產(chǎn)黨黨旗為旗面綴有金黃色黨徽?qǐng)D案的紅旗,通用規(guī)格有五種.這五種規(guī)格黨旗的長(zhǎng)(單位:cm)成等差數(shù)列,對(duì)應(yīng)的寬為(單位:cm),且長(zhǎng)與寬之比都相等,已知,,,則A.64 B.96 C.128 D.160【答案】C解析:由題意,五種規(guī)格黨旗的長(zhǎng)(單位:cm)成等差數(shù)列,設(shè)公差為,因?yàn)?,,可得,可得,又由長(zhǎng)與寬之比都相等,且,可得,所以.故選:C.二、填空題4.(2023年北京卷·第14題)我國(guó)度量衡的發(fā)展有著悠久的歷史,戰(zhàn)國(guó)時(shí)期就已經(jīng)出現(xiàn)了類似于砝碼的、用來測(cè)量物體質(zhì)量的“環(huán)權(quán)”.已知9枚環(huán)權(quán)的質(zhì)量(單位:銖)從小到大構(gòu)成項(xiàng)數(shù)為9的數(shù)列,該數(shù)列的前3項(xiàng)成等差數(shù)列,后7項(xiàng)成等比數(shù)列,且,則___________;數(shù)列所有項(xiàng)的和為____________.【答案】①.48②.384解析:方法一:設(shè)前3項(xiàng)的公差為,后7項(xiàng)公比為,則,且,可得,則,即,可得,空1:可得,空2:方法二:空1:因?yàn)闉榈缺葦?shù)列,則,且,所以;又因?yàn)?,則;空2:設(shè)后7項(xiàng)公比為,則,解得,可得,所以.故答案為:48;384.5.(2021年新高考Ⅰ卷·第16題)某校學(xué)生在研究民間剪紙藝術(shù)時(shí),發(fā)現(xiàn)剪紙時(shí)經(jīng)常會(huì)沿紙的某條對(duì)稱軸把紙對(duì)折,規(guī)格為的長(zhǎng)方形紙,對(duì)折1次共可以得到,兩種規(guī)格的圖形,它們的面積之和,對(duì)折2次共可以得到,,三種規(guī)格的圖形,它們的面積之和,以此類推,則對(duì)折4次共可以得到不同規(guī)格圖形的種數(shù)為______;如果對(duì)折次,那么______.【答案】5【解析】(1)對(duì)折次可得到如下規(guī)格:,,,,,共種;(2)由題意可得,,,,,,設(shè),則,兩式作差得,因此,,故答案為;.6(2024·北京·高考真題)設(shè)與是兩個(gè)不同的無窮數(shù)列,且都不是常數(shù)列.記集合,給出下列4個(gè)結(jié)論:①若與均為等差數(shù)列,則M中最多有1個(gè)元素;②若與均為等比數(shù)列,則M中最多有2個(gè)元素;③若為等差數(shù)列,為等比數(shù)列,則M中最多有3個(gè)元素;④若為遞增數(shù)列,為遞減數(shù)列,則M中最多有1個(gè)元素.其中正確結(jié)論的序號(hào)是.【答案】①③④【分析】利用兩類數(shù)列的散點(diǎn)圖的特征可判斷①④的正誤,利用反例可判斷②的正誤,結(jié)合通項(xiàng)公式的特征及反證法可判斷③的正誤.【詳解】對(duì)于①,因?yàn)榫鶠榈炔顢?shù)列,故它們的散點(diǎn)圖分布在直線上,而兩條直線至多有一個(gè)公共點(diǎn),故中至多一個(gè)元素,故①正確.對(duì)于②,取則均為等比數(shù)列,但當(dāng)為偶數(shù)時(shí),有,此時(shí)中有無窮多個(gè)元素,故②錯(cuò)誤.對(duì)于③,設(shè),,若中至少四個(gè)元素,則關(guān)于的方程至少有4個(gè)不同的正數(shù)解,若,則由和的散點(diǎn)圖可得關(guān)于的方程至多有兩個(gè)不同的解,矛盾;若,考慮關(guān)于的方程奇數(shù)解的個(gè)數(shù)和偶數(shù)解的個(gè)數(shù),當(dāng)有偶數(shù)解,此方程即為,方程至多有兩個(gè)偶數(shù)解,且有兩個(gè)偶數(shù)解時(shí),否則,因單調(diào)性相反,方程至多一個(gè)偶數(shù)解,當(dāng)有奇數(shù)解,此方程即為,方程至多有兩個(gè)奇數(shù)解,且有兩個(gè)奇數(shù)解時(shí)即否則,因單調(diào)性相反,方程至多一個(gè)奇數(shù)解,因?yàn)?,不可能同時(shí)成立,故不可能有4個(gè)不同的整數(shù)解,即M中最多有3個(gè)元素,故③正確.對(duì)于④,因?yàn)闉檫f增數(shù)列,為遞減數(shù)列,前者散點(diǎn)圖呈上升趨勢(shì),后者的散點(diǎn)圖呈下降趨勢(shì),兩者至多一個(gè)交點(diǎn),故④正確.故答案為:①③④.考點(diǎn)04數(shù)列新定義問題1(2024·全國(guó)·高考Ⅰ卷)設(shè)m為正整數(shù),數(shù)列是公差不為0的等差數(shù)列,若從中刪去兩項(xiàng)和后剩余的項(xiàng)可被平均分為組,且每組的4個(gè)數(shù)都能構(gòu)成等差數(shù)列,則稱數(shù)列是可分?jǐn)?shù)列.(1)寫出所有的,,使數(shù)列是可分?jǐn)?shù)列;(2)當(dāng)時(shí),證明:數(shù)列是可分?jǐn)?shù)列;(3)從中一次任取兩個(gè)數(shù)和,記數(shù)列是可分?jǐn)?shù)列的概率為,證明:.【答案】(1)(2)證明見解析(3)證明見解析【詳解】(1)首先,我們?cè)O(shè)數(shù)列的公差為,則.由于一個(gè)數(shù)列同時(shí)加上一個(gè)數(shù)或者乘以一個(gè)非零數(shù)后是等差數(shù)列,當(dāng)且僅當(dāng)該數(shù)列是等差數(shù)列,故我們可以對(duì)該數(shù)列進(jìn)行適當(dāng)?shù)淖冃危玫叫聰?shù)列,然后對(duì)進(jìn)行相應(yīng)的討論即可.換言之,我們可以不妨設(shè),此后的討論均建立在該假設(shè)下進(jìn)行.回到原題,第1小問相當(dāng)于從中取出兩個(gè)數(shù)和,使得剩下四個(gè)數(shù)是等差數(shù)列.那么剩下四個(gè)數(shù)只可能是,或,或.所以所有可能的就是.(2)由于從數(shù)列中取出和后,剩余的個(gè)數(shù)可以分為以下兩個(gè)部分,共組,使得每組成等差數(shù)列:①,共組;②,共組.(如果,則忽略②)故數(shù)列是可分?jǐn)?shù)列.(3)定義集合,.下面證明,對(duì),如果下面兩個(gè)命題同時(shí)成立,則數(shù)列一定是可分?jǐn)?shù)列:命題1:或;命題2:.我們分兩種情況證明這個(gè)結(jié)論.第一種情況:如果,且.此時(shí)設(shè),,.則由可知,即,故.此時(shí),由于從數(shù)列中取出和后,剩余的個(gè)數(shù)可以分為以下三個(gè)部分,共組,使得每組成等差數(shù)列:①,共組;②,共組;③,共組.(如果某一部分的組數(shù)為,則忽略之)故此時(shí)數(shù)列是可分?jǐn)?shù)列.第二種情況:如果,且.此時(shí)設(shè),,.則由可知,即,故.由于,故,從而,這就意味著.此時(shí),由于從數(shù)列中取出和后,剩余的個(gè)數(shù)可以分為以下四個(gè)部分,共組,使得每組成等差數(shù)列:①,共組;②,,共組;③全體,其中,共組;④,共組.(如果某一部分的組數(shù)為,則忽略之)這里對(duì)②和③進(jìn)行一下解釋:將③中的每一組作為一個(gè)橫排,排成一個(gè)包含個(gè)行,個(gè)列的數(shù)表以后,個(gè)列分別是下面這些數(shù):,,,.可以看出每列都是連續(xù)的若干個(gè)整數(shù),它們?cè)偃〔⒁院?,將取遍中除開五個(gè)集合,,,,中的十個(gè)元素以外的所有數(shù).而這十個(gè)數(shù)中,除開已經(jīng)去掉的和以外,剩余的八個(gè)數(shù)恰好就是②中出現(xiàn)的八個(gè)數(shù).這就說明我們給出的分組方式滿足要求,故此時(shí)數(shù)列是可分?jǐn)?shù)列.至此,我們證明了:對(duì),如果前述命題1和命題2同時(shí)成立,則數(shù)列一定是可分?jǐn)?shù)列.然后我們來考慮這樣的的個(gè)數(shù).首先,由于,和各有個(gè)元素,故滿足命題1的總共有個(gè);而如果,假設(shè),則可設(shè),,代入得.但這導(dǎo)致,矛盾,所以.設(shè),,,則,即.所以可能的恰好就是,對(duì)應(yīng)的分別是,總共個(gè).所以這個(gè)滿足命題1的中,不滿足命題2的恰好有個(gè).這就得到同時(shí)滿足命題1和命題2的的個(gè)數(shù)為.當(dāng)我們從中一次任取兩個(gè)數(shù)和時(shí),總的選取方式的個(gè)數(shù)等于.而根據(jù)之前的結(jié)論,使得數(shù)列是可分?jǐn)?shù)列的至少有個(gè).所以數(shù)列是可分?jǐn)?shù)列的概率一定滿足.這就證明了結(jié)論.2(2024·北京·高考真題)已知集合.給定數(shù)列,和序列,其中,對(duì)數(shù)列進(jìn)行如下變換:將的第項(xiàng)均加1,其余項(xiàng)不變,得到的數(shù)列記作;將的第項(xiàng)均加1,其余項(xiàng)不變,得到數(shù)列記作;……;以此類推,得到,簡(jiǎn)記為.(1)給定數(shù)列和序列,寫出;(2)是否存在序列,使得為,若存在,寫出一個(gè)符合條件的;若不存在,請(qǐng)說明理由;(3)若數(shù)列的各項(xiàng)均為正整數(shù),且為偶數(shù),求證:“存在序列,使得的各項(xiàng)都相等”的充要條件為“”.【答案】(1)(2)不存在符合條件的,理由見解析(3)證明見解析【詳解】(1)因?yàn)閿?shù)列,由序列可得;由序列可得;由序列可得;所以.(2)解法一:假設(shè)存在符合條件的,可知的第項(xiàng)之和為,第項(xiàng)之和為,則,而該方程組無解,故假設(shè)不成立,故不存在符合條件的;解法二:由題意可知:對(duì)于任意序列,所得數(shù)列之和比原數(shù)列之和多4,假設(shè)存在符合條件的,且,因?yàn)?,即序列共?項(xiàng),由題意可知:,檢驗(yàn)可知:當(dāng)時(shí),上式不成立,即假設(shè)不成立,所以不存在符合條件的.(3)解法一:我們?cè)O(shè)序列為,特別規(guī)定.必要性:若存在序列,使得的各項(xiàng)都相等.則,所以.根據(jù)的定義,顯然有,這里,.所以不斷使用該式就得到,必要性得證.充分性:若.由已知,為偶數(shù),而,所以也是偶數(shù).我們?cè)O(shè)是通過合法的序列的變換能得到的所有可能的數(shù)列中,使得最小的一個(gè).上面已經(jīng)說明,這里,.從而由可得.同時(shí),由于總是偶數(shù),所以和的奇偶性保持不變,從而和都是偶數(shù).下面證明不存在使得.假設(shè)存在,根據(jù)對(duì)稱性,不妨設(shè),,即.情況1:若,則由和都是偶數(shù),知.對(duì)該數(shù)列連續(xù)作四次變換后,新的相比原來的減少,這與的最小性矛盾;情況2:若,不妨設(shè).情況2-1:如果,則對(duì)該數(shù)列連續(xù)作兩次變換后,新的相比原來的至少減少,這與的最小性矛盾;情況2-2:如果,則對(duì)該數(shù)列連續(xù)作兩次變換后,新的相比原來的至少減少,這與的最小性矛盾.這就說明無論如何都會(huì)導(dǎo)致矛盾,所以對(duì)任意的都有.假設(shè)存在使得,則是奇數(shù),所以都是奇數(shù),設(shè)為.則此時(shí)對(duì)任意,由可知必有.而和都是偶數(shù),故集合中的四個(gè)元素之和為偶數(shù),對(duì)該數(shù)列進(jìn)行一次變換,則該數(shù)列成為常數(shù)列,新的等于零,比原來的更小,這與的最小性矛盾.綜上,只可能,而,故是常數(shù)列,充分性得證.解法二:由題意可知:中序列的順序不影響的結(jié)果,且相對(duì)于序列也是無序的,(?。┤?,不妨設(shè),則,①當(dāng),則,分別執(zhí)行個(gè)序列、個(gè)序列,可得,為常數(shù)列,符合題意;②當(dāng)中有且僅有三個(gè)數(shù)相等,不妨設(shè),則,即,分別執(zhí)行個(gè)序列、個(gè)序列可得,即,因?yàn)闉榕紨?shù),即為偶數(shù),可知的奇偶性相同,則,分別執(zhí)行個(gè)序列,,,,可得,為常數(shù)列,符合題意;③若,則,即,分別執(zhí)行個(gè)、個(gè),可得,因?yàn)椋傻?,即轉(zhuǎn)為①,可知符合題意;④當(dāng)中有且僅有兩個(gè)數(shù)相等,不妨設(shè),則,即,分別執(zhí)行個(gè)、個(gè),可得,且,可得,即轉(zhuǎn)為②,可知符合題意;⑤若,則,即,分別執(zhí)行個(gè)、個(gè),可得,且,可得,即轉(zhuǎn)為③,可知符合題意;綜上所述:若,則存在序列,使得為常數(shù)列;(ⅱ)若存在序列,使得為常數(shù)列,因?yàn)閷?duì)任意,均有成立,若為常數(shù)列,則,所以;綜上所述:“存在序列,使得為常數(shù)列”的充要條件“”.3(2023年北京卷·第21題)已知數(shù)列的項(xiàng)數(shù)均為m,且的前n項(xiàng)和分別為,并規(guī)定.對(duì)于,定義,其中,表示數(shù)集M中最大的數(shù).(1)若,求的值;(2)若,且,求;(3)證明:存在,滿足使得.【答案】(1),,,(2)(3)證明見詳解解析:(1)由題意可知:,當(dāng)時(shí),則,故;當(dāng)時(shí),則,故;當(dāng)時(shí),則故;當(dāng)時(shí),則,故;綜上所述:,,,.(2)由題意可知:,且,因?yàn)椋瑒t,當(dāng)且僅當(dāng)時(shí),等號(hào)成立,所以,又因?yàn)?,則,即,可得,反證:假設(shè)滿足的最小正整數(shù)為,當(dāng)時(shí),則;當(dāng)時(shí),則,則,又因?yàn)?,則,假設(shè)不成立,故,即數(shù)列是以首項(xiàng)為1,公差為1的等差數(shù)列,所以.(3)(ⅰ)若,構(gòu)建,由題意可得:,且為整數(shù),反證,假設(shè)存在正整數(shù),使得,則,可得,這與相矛盾,故對(duì)任意,均有①若存在正整數(shù),使得,即,可取,使得;②若不存在正整數(shù),使得,因?yàn)?,且,所以必存在,使得,即,可得,可取,使得?ⅱ)若,構(gòu)建,由題意可得:,且為整數(shù),反證,假設(shè)存在正整數(shù),使得,則,可得,這與相矛盾,故對(duì)任意,均有.①若存在正整數(shù),使得,即,可取,使得;②若不存在正整數(shù),使得,因?yàn)椋?,所以必存在,使得,即,可得,可取,使得;綜上所述:存在使得.考點(diǎn)05數(shù)列與其他知識(shí)點(diǎn)交匯及綜合問題一、選擇題1.(2023年北京卷·第10題)已知數(shù)列滿足,則 ()A.當(dāng)時(shí),為遞減數(shù)列,且存在常數(shù),使得恒成立B.當(dāng)時(shí),為遞增數(shù)列,且存在常數(shù),使得恒成立C.當(dāng)時(shí),為遞減數(shù)列,且存在常數(shù),使得恒成立D.當(dāng)時(shí),為遞增數(shù)列,且存在常數(shù),使得恒成立【答案】B解析:法1:因?yàn)?,故,?duì)于A,若,可用數(shù)學(xué)歸納法證明:即,證明:當(dāng)時(shí),,此時(shí)不等關(guān)系成立;設(shè)當(dāng)時(shí),成立,則,故成立,由數(shù)學(xué)歸納法可得成立.而,,,故,故,故為減數(shù)列,注意故,結(jié)合,所以,故,故,若存在常數(shù),使得恒成立,則,故,故,故恒成立僅對(duì)部分成立,故A不成立.對(duì)于B,若可用數(shù)學(xué)歸納法證明:即,證明:當(dāng)時(shí),,此時(shí)不等關(guān)系成立;設(shè)當(dāng)時(shí),成立,則,故成立即由數(shù)學(xué)歸納法可得成立.而,,,故,故,故為增數(shù)列,若,則恒成立,故B正確.對(duì)于C,當(dāng)時(shí),可用數(shù)學(xué)歸納法證明:即,證明:當(dāng)時(shí),,此時(shí)不等關(guān)系成立;設(shè)當(dāng)時(shí),成立,則,故成立即由數(shù)學(xué)歸納法可得成立.而,故,故為減數(shù)列,又,結(jié)合可得:,所以,若,若存在常數(shù),使得恒成立,則恒成立,故,的個(gè)數(shù)有限,矛盾,故C錯(cuò)誤.對(duì)于D,當(dāng)時(shí),可用數(shù)學(xué)歸納法證明:即,證明:當(dāng)時(shí),,此時(shí)不等關(guān)系成立;設(shè)當(dāng)時(shí),成立,則,故成立由數(shù)學(xué)歸納法可得成立.而,故,故為增數(shù)列,又,結(jié)合可得:,所以,若存在常數(shù),使得恒成立,則,故,故,這與n的個(gè)數(shù)有限矛盾,故D錯(cuò)誤.故選:B.法2:因?yàn)?,令,則,令,得或;令,得;所以在和上單調(diào)遞增,在上單調(diào)遞減,令,則,即,解得或或,注意到,,所以結(jié)合的單調(diào)性可知在和上,在和上,對(duì)于A,因?yàn)?,則,當(dāng)時(shí),,,則,假設(shè)當(dāng)時(shí),,當(dāng)時(shí),,則,綜上:,即,因?yàn)樵谏希裕瑒t為遞減數(shù)列,因?yàn)?,令,則,因?yàn)殚_口向上,對(duì)稱軸為,所以在上單調(diào)遞減,故,所以在上單調(diào)遞增,故,故,即,假設(shè)存常數(shù),使得恒成立,取,其中,且,因?yàn)?,所以,上式相加得,,則,與恒成立矛盾,故A錯(cuò)誤;對(duì)于B,因?yàn)椋?dāng)時(shí),,,假設(shè)當(dāng)時(shí),,當(dāng)時(shí),因?yàn)椋?,則,所以,又當(dāng)時(shí),,即,假設(shè)當(dāng)時(shí),,當(dāng)時(shí),因?yàn)?,所以,則,所以,綜上:,因?yàn)樵谏希?,所以為遞增數(shù)列,此時(shí),取,滿足題意,故B正確;對(duì)于C,因?yàn)?,則,注意到當(dāng)時(shí),,,猜想當(dāng)時(shí),,當(dāng)與時(shí),與滿足,假設(shè)當(dāng)時(shí),,當(dāng)時(shí),所以,綜上:,易知,則,故,所以,因?yàn)樵谏?,所以,則為遞減數(shù)列,假設(shè)存在常數(shù),使得恒成立,記,取,其中,則,故,所以,即,所以,故不恒成立,故C錯(cuò)誤;對(duì)于D,因?yàn)?,?dāng)時(shí),,則,假設(shè)當(dāng)時(shí),,當(dāng)時(shí),,則,綜上:,因?yàn)樵谏?,所以,所以為遞增數(shù)列,因?yàn)?,令,則,因?yàn)殚_口向上,對(duì)稱軸為,所以在上單調(diào)遞增,故,所以,故,即,假設(shè)存在常數(shù),使得恒成立,取,其中,且,因?yàn)?,所以,上式相加得,,則,與恒成立矛盾,故D錯(cuò)誤.故選:B.2.(2020年浙江省高考數(shù)學(xué)試卷·第7題)已知等差數(shù)列{an}的前n項(xiàng)和Sn,公差d≠0,.記b1=S2,bn+1=Sn+2–S2n,,下列等式不可能成立的是 ()A.2a4=a2+a6 B.2b4=b2+b6 C. D.【答案】D解析:對(duì)于A,因?yàn)閿?shù)列為等差數(shù)列,所以根據(jù)等差數(shù)列的下標(biāo)和性質(zhì),由可得,,A正確;對(duì)于B,由題意可知,,,∴,,,.∴,.根據(jù)等差數(shù)列的下標(biāo)和性質(zhì),由可得,B正確;對(duì)于C,,當(dāng)時(shí),,C正確;對(duì)于D,,,.當(dāng)時(shí),,∴即;當(dāng)時(shí),,∴即,所以,D不正確.故選:D3.(2022高考北京卷·第6題)設(shè)是公差不為0的無窮等差數(shù)列,則“為遞增數(shù)列”是“存在正整數(shù),當(dāng)時(shí),”的 ()A.充分而不必要條件 B.必要而不充分條件C充分必要條件D.既不充分也不必要條件【答案】C【解析】設(shè)等差數(shù)列的公差為,則,記為不超過的最大整數(shù).若為單調(diào)遞增數(shù)列,則,若,則當(dāng)時(shí),;若,則,由可得,取,則當(dāng)時(shí),,所以,“是遞增數(shù)列”“存在正整數(shù),當(dāng)時(shí),”;若存在正整數(shù),當(dāng)時(shí),,取且,,假設(shè),令可得,且,當(dāng)時(shí),,與題設(shè)矛盾,假設(shè)不成立,則,即數(shù)列是遞增數(shù)列.所以,“是遞增數(shù)列”“存在正整數(shù),當(dāng)時(shí),”.所以,“是遞增數(shù)列”是“存在正整數(shù),當(dāng)時(shí),”的充分必要條件.故選,C.4.(2020年高考課標(biāo)Ⅱ卷理科·第11題)0-1周期序列在通信技術(shù)中有著重要應(yīng)用.若序列滿足,且存在正整數(shù),使得成立,則稱其為0-1周期序列,并稱滿足的最小正整數(shù)為這個(gè)序列的周期.對(duì)于周期為的0-1序列,是描述其性質(zhì)的重要指標(biāo),下列周期為5的0-1序列中,滿足的序列是 ()A. B. C. D.【答案】C解析:由知,序列的周期為m,由已知,,對(duì)于選項(xiàng)A,,不滿足;對(duì)于選項(xiàng)B,,不滿足;對(duì)于選項(xiàng)D,,不滿足;故選:C【點(diǎn)晴】本題考查數(shù)列的新定義問題,涉及到周期數(shù)列,考查學(xué)生對(duì)新定義的理解能力以及數(shù)學(xué)運(yùn)算能力,是一道中檔題.5.(2023年全國(guó)乙卷理科·第10題)已知等差數(shù)列的公差為,集合,若,則 ()A.-1 B. C.0 D.【答案】B解析:依題意,等差數(shù)列中,,顯然函數(shù)的周期為3,而,即最多3個(gè)不同取值,又,則在中,或,于是有,即有,解得,所以,.故選:B二解答題6(2024·全國(guó)·高考Ⅱ卷)已知雙曲線,點(diǎn)在上,為常數(shù),.按照如下方式依次構(gòu)造點(diǎn):過作斜率為的直線與的左支交于點(diǎn),令為關(guān)于軸的對(duì)稱點(diǎn),記的坐標(biāo)為.(1)若,求;(2)證明:數(shù)列是公比為的等比數(shù)列;(3)設(shè)為的面積,證明:對(duì)任意正整數(shù),.【答案】(1),(2)證明見解析(3)證明見解析【詳解】(1)由已知有,故的方程為.當(dāng)時(shí),過且斜率為的直線為,與聯(lián)立得到.解得或,所以該直線與的不同于的交點(diǎn)為,該點(diǎn)顯然在的左支上.故,從而,.(2)由于過且斜率為的直線為,與聯(lián)立,得到方程.展開即得,由于已經(jīng)是直線和的公共點(diǎn),故方程必有一根.從而根據(jù)韋達(dá)定理,另一根,相應(yīng)的.所以該直線與的不同于的交點(diǎn)為,而注意到的橫坐標(biāo)亦可通過韋達(dá)定理表示為,故一定在的左支上.所以.這就得到,.所以.再由,就知道,所以數(shù)列是公比為的等比數(shù)列.(3)方法一:先證明一個(gè)結(jié)論:對(duì)平面上三個(gè)點(diǎn),若,,則.(若在同一條直線上,約定)證明:.證畢,回到原題.由于上一小問已經(jīng)得到,,故.再由,就知道,所以數(shù)列是公比為的等比數(shù)列.所以對(duì)任意的正整數(shù),都有.而又有,,故利用前面已經(jīng)證明的結(jié)論即得.這就表明的取值是與無關(guān)的定值,所以.方法二:由于上一小問已經(jīng)得到,,故.再由,就知道,所以數(shù)列是公比為的等比數(shù)列.所以對(duì)任意的正整數(shù),都有.這就得到,以及.兩式相減,即得.移項(xiàng)得到.故.而,.所以和平行,這就得到,即.7.(2023年天津卷·第19題)已知是等差數(shù)列,.(1)求的通項(xiàng)公式和.(2)已知為等比數(shù)列,對(duì)于任意,若,則,(Ⅰ)當(dāng)時(shí),求證:;(Ⅱ)求的通項(xiàng)公式及其前項(xiàng)和.【答案】(1),;(2)(Ⅰ)證明見解析;(Ⅱ),前項(xiàng)和為.解析:(1)由題意可得,解得,則數(shù)列的通項(xiàng)公式為,求和得.(2)(Ⅰ)由題意可知,當(dāng)時(shí),,取,則,即,當(dāng)時(shí),,取,此時(shí),據(jù)此可得,綜上可得:.(Ⅱ)由(Ⅰ)可知:,據(jù)此猜測(cè),否則,若數(shù)列的公比,則,注意到,則不恒成立,即不恒成立,此時(shí)無法保證,若數(shù)列的公比,則,注意到,則不恒成立,即不恒成立,此時(shí)無法保證,綜上,數(shù)列的公比為,則數(shù)列的通項(xiàng)公式為,其前項(xiàng)和為:.8.(2022新高考全國(guó)I卷·第17題)記為數(shù)列的前n項(xiàng)和,已知是公差為的等差數(shù)列.(1)求的通項(xiàng)公式;(2)證明:.【答案】(1)(2)見解析解析:(1)∵,∴,∴,又∵是公差為的等差數(shù)列,∴,∴,∴

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論