![曹妃甸職業(yè)技術(shù)學(xué)院《機(jī)器學(xué)習(xí)A》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁](http://file4.renrendoc.com/view10/M02/25/3C/wKhkGWexYPuAG5kgAAKVoiVNcn4169.jpg)
![曹妃甸職業(yè)技術(shù)學(xué)院《機(jī)器學(xué)習(xí)A》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁](http://file4.renrendoc.com/view10/M02/25/3C/wKhkGWexYPuAG5kgAAKVoiVNcn41692.jpg)
![曹妃甸職業(yè)技術(shù)學(xué)院《機(jī)器學(xué)習(xí)A》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁](http://file4.renrendoc.com/view10/M02/25/3C/wKhkGWexYPuAG5kgAAKVoiVNcn41693.jpg)
![曹妃甸職業(yè)技術(shù)學(xué)院《機(jī)器學(xué)習(xí)A》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁](http://file4.renrendoc.com/view10/M02/25/3C/wKhkGWexYPuAG5kgAAKVoiVNcn41694.jpg)
![曹妃甸職業(yè)技術(shù)學(xué)院《機(jī)器學(xué)習(xí)A》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁](http://file4.renrendoc.com/view10/M02/25/3C/wKhkGWexYPuAG5kgAAKVoiVNcn41695.jpg)
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無效密自覺遵守考場(chǎng)紀(jì)律如考試作弊此答卷無效密封線第1頁,共3頁曹妃甸職業(yè)技術(shù)學(xué)院
《機(jī)器學(xué)習(xí)A》2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級(jí)_______學(xué)號(hào)_______姓名_______題號(hào)一二三四總分得分批閱人一、單選題(本大題共20個(gè)小題,每小題1分,共20分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、在一個(gè)圖像識(shí)別任務(wù)中,數(shù)據(jù)存在類別不平衡的問題,即某些類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類別。以下哪種處理方法可能是有效的?()A.過采樣少數(shù)類樣本,增加其數(shù)量,但可能導(dǎo)致過擬合B.欠采樣多數(shù)類樣本,減少其數(shù)量,但可能丟失重要信息C.生成合成樣本,如使用SMOTE算法,但合成樣本的質(zhì)量難以保證D.以上方法結(jié)合使用,并結(jié)合模型調(diào)整進(jìn)行優(yōu)化2、假設(shè)要為一個(gè)智能推薦系統(tǒng)選擇算法,根據(jù)用戶的歷史行為、興趣偏好和社交關(guān)系為其推薦相關(guān)的產(chǎn)品或內(nèi)容。以下哪種算法或技術(shù)可能是最適合的?()A.基于協(xié)同過濾的推薦算法,利用用戶之間的相似性或物品之間的相關(guān)性進(jìn)行推薦,但存在冷啟動(dòng)和數(shù)據(jù)稀疏問題B.基于內(nèi)容的推薦算法,根據(jù)物品的特征和用戶的偏好匹配推薦,但對(duì)新物品的推薦能力有限C.混合推薦算法,結(jié)合協(xié)同過濾和內(nèi)容推薦的優(yōu)點(diǎn),并通過特征工程和模型融合提高推薦效果,但實(shí)現(xiàn)復(fù)雜D.基于強(qiáng)化學(xué)習(xí)的推薦算法,通過與用戶的交互不斷優(yōu)化推薦策略,但訓(xùn)練難度大且收斂慢3、在自然語言處理中,詞嵌入(WordEmbedding)的作用是()A.將單詞轉(zhuǎn)換為向量B.進(jìn)行詞性標(biāo)注C.提取文本特征D.以上都是4、假設(shè)正在進(jìn)行一個(gè)目標(biāo)檢測(cè)任務(wù),例如在圖像中檢測(cè)出人物和車輛。以下哪種深度學(xué)習(xí)框架在目標(biāo)檢測(cè)中被廣泛應(yīng)用?()A.TensorFlowB.PyTorchC.CaffeD.以上框架都常用于目標(biāo)檢測(cè)5、在一個(gè)推薦系統(tǒng)中,為了提高推薦的多樣性和新穎性,以下哪種方法可能是有效的?()A.引入隨機(jī)推薦,增加推薦結(jié)果的不確定性,但可能降低相關(guān)性B.基于內(nèi)容的多樣性優(yōu)化,選擇不同類型的物品進(jìn)行推薦,但可能忽略用戶偏好C.探索-利用平衡策略,在推薦熟悉物品和新物品之間找到平衡,但難以精確控制D.以上方法結(jié)合使用,并根據(jù)用戶反饋動(dòng)態(tài)調(diào)整6、在進(jìn)行機(jī)器學(xué)習(xí)模型部署時(shí),需要考慮模型的計(jì)算效率和資源占用。假設(shè)我們訓(xùn)練了一個(gè)復(fù)雜的深度學(xué)習(xí)模型,但實(shí)際應(yīng)用場(chǎng)景中的計(jì)算資源有限。以下哪種方法可以在一定程度上減少模型的計(jì)算量和參數(shù)數(shù)量?()A.增加模型的層數(shù)和神經(jīng)元數(shù)量B.對(duì)模型進(jìn)行量化,如使用低精度數(shù)值表示參數(shù)C.使用更復(fù)雜的激活函數(shù),提高模型的表達(dá)能力D.不進(jìn)行任何處理,直接部署模型7、在進(jìn)行特征工程時(shí),需要對(duì)連續(xù)型特征進(jìn)行離散化處理。以下哪種離散化方法在某些情況下可以保留更多的信息,同時(shí)減少數(shù)據(jù)的復(fù)雜性?()A.等寬離散化B.等頻離散化C.基于聚類的離散化D.基于決策樹的離散化8、在進(jìn)行特征選擇時(shí),有多種方法可以評(píng)估特征的重要性。假設(shè)我們有一個(gè)包含多個(gè)特征的數(shù)據(jù)集。以下關(guān)于特征重要性評(píng)估方法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.信息增益通過計(jì)算特征引入前后信息熵的變化來衡量特征的重要性B.卡方檢驗(yàn)可以檢驗(yàn)特征與目標(biāo)變量之間的獨(dú)立性,從而評(píng)估特征的重要性C.隨機(jī)森林中的特征重要性評(píng)估是基于特征對(duì)模型性能的貢獻(xiàn)程度D.所有的特征重要性評(píng)估方法得到的結(jié)果都是完全準(zhǔn)確和可靠的,不需要進(jìn)一步驗(yàn)證9、在機(jī)器學(xué)習(xí)中,模型的可解釋性也是一個(gè)重要的問題。以下關(guān)于模型可解釋性的說法中,錯(cuò)誤的是:模型的可解釋性是指能夠理解模型的決策過程和預(yù)測(cè)結(jié)果的能力??山忉屝詫?duì)于一些關(guān)鍵領(lǐng)域如醫(yī)療、金融等非常重要。那么,下列關(guān)于模型可解釋性的說法錯(cuò)誤的是()A.線性回歸模型具有較好的可解釋性,因?yàn)樗臎Q策過程可以用公式表示B.決策樹模型也具有一定的可解釋性,因?yàn)榭梢酝ㄟ^樹形結(jié)構(gòu)直觀地理解決策過程C.深度神經(jīng)網(wǎng)絡(luò)模型通常具有較低的可解釋性,因?yàn)槠錄Q策過程非常復(fù)雜D.模型的可解釋性和性能是相互矛盾的,提高可解釋性必然會(huì)降低性能10、在一個(gè)回歸問題中,如果需要考慮多個(gè)輸出變量之間的相關(guān)性,以下哪種模型可能更適合?()A.多元線性回歸B.向量自回歸(VAR)C.多任務(wù)學(xué)習(xí)模型D.以上模型都可以11、某機(jī)器學(xué)習(xí)模型在訓(xùn)練過程中,損失函數(shù)的值一直沒有明顯下降。以下哪種可能是導(dǎo)致這種情況的原因?()A.學(xué)習(xí)率過高B.模型過于復(fù)雜C.數(shù)據(jù)預(yù)處理不當(dāng)D.以上原因都有可能12、在處理自然語言處理任務(wù)時(shí),詞嵌入(WordEmbedding)是一種常用的技術(shù)。假設(shè)我們要對(duì)一段文本進(jìn)行情感分析。以下關(guān)于詞嵌入的描述,哪一項(xiàng)是錯(cuò)誤的?()A.詞嵌入將單詞表示為低維實(shí)數(shù)向量,捕捉單詞之間的語義關(guān)系B.Word2Vec和GloVe是常見的詞嵌入模型,可以學(xué)習(xí)到單詞的分布式表示C.詞嵌入向量的維度通常是固定的,且不同單詞的向量維度必須相同D.詞嵌入可以直接用于文本分類任務(wù),無需進(jìn)行進(jìn)一步的特征工程13、在一個(gè)圖像生成的任務(wù)中,需要根據(jù)給定的描述或條件生成逼真的圖像??紤]到生成圖像的質(zhì)量、多樣性和創(chuàng)新性。以下哪種生成模型可能是最有潛力的?()A.生成對(duì)抗網(wǎng)絡(luò)(GAN),通過對(duì)抗訓(xùn)練生成逼真的圖像,但可能存在模式崩潰和訓(xùn)練不穩(wěn)定的問題B.變分自編碼器(VAE),能夠?qū)W習(xí)數(shù)據(jù)的潛在分布并生成新樣本,但生成的圖像可能較模糊C.自回歸模型,如PixelCNN,逐像素生成圖像,保證了局部一致性,但生成速度較慢D.擴(kuò)散模型,通過逐步去噪生成圖像,具有較高的質(zhì)量和多樣性,但計(jì)算成本較高14、在處理文本分類任務(wù)時(shí),除了傳統(tǒng)的機(jī)器學(xué)習(xí)算法,深度學(xué)習(xí)模型也表現(xiàn)出色。假設(shè)我們要對(duì)新聞文章進(jìn)行分類。以下關(guān)于文本分類模型的描述,哪一項(xiàng)是不正確的?()A.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)及其變體如長(zhǎng)短期記憶網(wǎng)絡(luò)(LSTM)和門控循環(huán)單元(GRU)能夠處理文本的序列信息B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)也可以應(yīng)用于文本分類,通過卷積操作提取文本的局部特征C.Transformer架構(gòu)在處理長(zhǎng)文本時(shí)性能優(yōu)于RNN和CNN,但其計(jì)算復(fù)雜度較高D.深度學(xué)習(xí)模型在文本分類任務(wù)中總是比傳統(tǒng)機(jī)器學(xué)習(xí)算法(如樸素貝葉斯、支持向量機(jī))效果好15、在機(jī)器學(xué)習(xí)中,偏差-方差權(quán)衡(Bias-VarianceTradeoff)描述的是()A.模型的復(fù)雜度與性能的關(guān)系B.訓(xùn)練誤差與測(cè)試誤差的關(guān)系C.過擬合與欠擬合的關(guān)系D.以上都是16、在機(jī)器學(xué)習(xí)中,模型的可解釋性是一個(gè)重要的方面。以下哪種模型通常具有較好的可解釋性?()A.決策樹B.神經(jīng)網(wǎng)絡(luò)C.隨機(jī)森林D.支持向量機(jī)17、在一個(gè)異常檢測(cè)任務(wù)中,如果異常樣本的特征與正常樣本有很大的不同,以下哪種方法可能效果較好?()A.基于距離的方法,如K近鄰B.基于密度的方法,如DBSCANC.基于聚類的方法,如K-MeansD.以上都不行18、假設(shè)正在開發(fā)一個(gè)智能推薦系統(tǒng),用于向用戶推薦個(gè)性化的商品。系統(tǒng)需要根據(jù)用戶的歷史購買記錄、瀏覽行為、搜索關(guān)鍵詞等信息來預(yù)測(cè)用戶的興趣和需求。在這個(gè)過程中,特征工程起到了關(guān)鍵作用。如果要將用戶的購買記錄轉(zhuǎn)化為有效的特征,以下哪種方法不太合適?()A.統(tǒng)計(jì)用戶購買每種商品的頻率B.對(duì)用戶購買的商品進(jìn)行分類,并計(jì)算各類別的比例C.直接將用戶購買的商品名稱作為特征輸入模型D.計(jì)算用戶購買商品的時(shí)間間隔和購買周期19、想象一個(gè)文本分類的任務(wù),需要對(duì)大量的新聞文章進(jìn)行分類,如政治、經(jīng)濟(jì)、體育等??紤]到詞匯的多樣性和語義的復(fù)雜性。以下哪種詞向量表示方法可能是最適合的?()A.One-Hot編碼,簡(jiǎn)單直觀,但向量維度高且稀疏B.詞袋模型(BagofWords),忽略詞序但計(jì)算簡(jiǎn)單C.分布式詞向量,如Word2Vec或GloVe,能夠捕捉詞與詞之間的語義關(guān)系,但對(duì)多義詞處理有限D(zhuǎn).基于Transformer的預(yù)訓(xùn)練語言模型生成的詞向量,具有強(qiáng)大的語言理解能力,但計(jì)算成本高20、在一個(gè)圖像分類任務(wù)中,如果需要快速進(jìn)行模型的訓(xùn)練和預(yù)測(cè),以下哪種輕量級(jí)模型架構(gòu)可能比較適合?()A.MobileNetB.ResNetC.InceptionD.VGG二、簡(jiǎn)答題(本大題共5個(gè)小題,共25分)1、(本題5分)解釋如何使用協(xié)同過濾算法進(jìn)行推薦。2、(本題5分)談?wù)勗诘V產(chǎn)資源勘探中,機(jī)器學(xué)習(xí)的應(yīng)用。3、(本題5分)談?wù)勅绾问褂脵C(jī)器學(xué)習(xí)進(jìn)行衛(wèi)星圖像分析。4、(本題5分)解釋機(jī)器學(xué)習(xí)在電信行業(yè)中的用戶流失預(yù)測(cè)。5、(本題5分)機(jī)器學(xué)習(xí)中如何處理高維數(shù)據(jù)?三、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)運(yùn)用K-Means聚類分析城市的交通流量模式。2、(本題5分)運(yùn)用梯度提升樹預(yù)測(cè)石油價(jià)格的走勢(shì)。3、(本題5分)運(yùn)用梯度提升樹預(yù)測(cè)股票的成交量。4、(本題5分)使用強(qiáng)化學(xué)習(xí)算法訓(xùn)練智能體玩游戲,如圍棋。5、(本題5分)借助社交媒體數(shù)據(jù)進(jìn)行用戶興趣分析,精準(zhǔn)投放廣告。四、論述題(本大題共3個(gè)小題,共30分)1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 個(gè)人雇傭鐘點(diǎn)工勞務(wù)合同
- 文化創(chuàng)意產(chǎn)業(yè)數(shù)字化升級(jí)投資合同
- 信息安全保障服務(wù)合同
- 個(gè)人收入證明收入證明協(xié)議年
- 設(shè)備材料買賣合同
- 智能車輛研發(fā)合作協(xié)議
- 青島二手房買賣合同的
- 爆破工程承包合同與爆破承包合同
- 裝飾材料購銷合同
- 裝載機(jī)司機(jī)雇傭合同
- SH/T 1627.1-1996工業(yè)用乙腈
- GB/T 5534-2008動(dòng)植物油脂皂化值的測(cè)定
- GB/T 12771-2019流體輸送用不銹鋼焊接鋼管
- 測(cè)量管理體系內(nèi)審檢查表
- 工程驗(yàn)收及移交管理方案
- 心臟手術(shù)麻醉的一般流程課件
- 圖片編輯概述課件
- 2023年岳陽職業(yè)技術(shù)學(xué)院?jiǎn)握新殬I(yè)技能考試筆試題庫及答案解析
- 信號(hào)與系統(tǒng)復(fù)習(xí)題及答案
- 北師大版八年級(jí)數(shù)學(xué)上冊(cè)《認(rèn)識(shí)無理數(shù)(第2課時(shí))》參考課件2
- 中級(jí)建構(gòu)筑物消防員理論綜合模擬題01原題
評(píng)論
0/150
提交評(píng)論