




下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
站名:站名:年級專業(yè):姓名:學(xué)號:凡年級專業(yè)、姓名、學(xué)號錯寫、漏寫或字跡不清者,成績按零分記?!堋狻€…………第1頁,共1頁貴州交通職業(yè)技術(shù)學(xué)院
《數(shù)據(jù)管理與分析》2023-2024學(xué)年第二學(xué)期期末試卷題號一二三四總分得分一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、數(shù)據(jù)分析中的數(shù)據(jù)可視化能夠幫助我們更直觀地理解數(shù)據(jù)。假設(shè)要展示不同地區(qū)在過去十年間的經(jīng)濟(jì)增長趨勢,以下關(guān)于數(shù)據(jù)可視化的描述,哪一項(xiàng)是不正確的?()A.可以使用折線圖清晰地呈現(xiàn)經(jīng)濟(jì)指標(biāo)隨時間的變化B.柱狀圖能夠有效地對比不同地區(qū)在特定時間點(diǎn)的經(jīng)濟(jì)數(shù)值C.為了使圖表更美觀,可以添加過多的裝飾元素,即使這可能會干擾數(shù)據(jù)的解讀D.選擇合適的顏色和標(biāo)記,能夠增強(qiáng)圖表的可讀性和吸引力2、數(shù)據(jù)分析中的聚類分析用于將數(shù)據(jù)分為不同的組或簇。假設(shè)要對一組學(xué)生的學(xué)習(xí)成績數(shù)據(jù)進(jìn)行聚類,以發(fā)現(xiàn)不同學(xué)習(xí)水平的群體。如果聚類結(jié)果中存在一個簇的規(guī)模遠(yuǎn)大于其他簇,可能意味著什么?()A.數(shù)據(jù)分布不均衡,需要重新聚類B.大部分學(xué)生的學(xué)習(xí)水平相似C.聚類算法選擇不當(dāng)D.這種情況是正常的,無需進(jìn)一步處理3、在數(shù)據(jù)分析中,若要檢驗(yàn)數(shù)據(jù)是否來自于某個特定的分布,應(yīng)使用哪種檢驗(yàn)方法?()A.卡方擬合優(yōu)度檢驗(yàn)B.Kolmogorov-Smirnov檢驗(yàn)C.Shapiro-Wilk檢驗(yàn)D.以上都是4、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理的效果可以通過多種方式進(jìn)行評估。以下關(guān)于數(shù)據(jù)預(yù)處理效果評估的說法中,錯誤的是?()A.數(shù)據(jù)預(yù)處理效果可以通過比較預(yù)處理前后的數(shù)據(jù)質(zhì)量指標(biāo)來評估B.數(shù)據(jù)預(yù)處理效果可以通過對預(yù)處理后的數(shù)據(jù)進(jìn)行分析和建模來評估C.數(shù)據(jù)預(yù)處理效果評估應(yīng)考慮數(shù)據(jù)的特點(diǎn)和分析目的,選擇合適的評估方法D.數(shù)據(jù)預(yù)處理效果評估只需要關(guān)注數(shù)據(jù)的準(zhǔn)確性,其他方面可以忽略不計5、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是重要的前置步驟。假設(shè)我們有一個包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯誤數(shù)據(jù)和重復(fù)記錄。以下關(guān)于數(shù)據(jù)清洗方法的描述,正確的是:()A.直接刪除包含缺失值的記錄,以快速簡化數(shù)據(jù)集B.對于錯誤數(shù)據(jù),可以根據(jù)經(jīng)驗(yàn)進(jìn)行手動修正,無需考慮數(shù)據(jù)的分布和規(guī)律C.使用均值或中位數(shù)來填充缺失值,不考慮數(shù)據(jù)的特征和潛在影響D.采用合適的算法和工具,識別并處理重復(fù)記錄、缺失值和錯誤數(shù)據(jù),同時考慮數(shù)據(jù)的特點(diǎn)和業(yè)務(wù)需求6、數(shù)據(jù)分析中的主成分分析(PCA)用于數(shù)據(jù)降維。假設(shè)要對一個高維的數(shù)據(jù)集進(jìn)行降維,以下關(guān)于主成分分析的描述,哪一項(xiàng)是不正確的?()A.主成分是原始變量的線性組合,能夠保留數(shù)據(jù)的大部分方差B.通過選擇前幾個主成分,可以在減少數(shù)據(jù)維度的同時盡量保持?jǐn)?shù)據(jù)的重要信息C.主成分分析可以消除變量之間的相關(guān)性,但可能會導(dǎo)致數(shù)據(jù)的物理意義變得不明確D.主成分分析適用于任何類型的數(shù)據(jù),不需要對數(shù)據(jù)進(jìn)行預(yù)處理和標(biāo)準(zhǔn)化7、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們面對一個包含大量缺失值、錯誤數(shù)據(jù)和重復(fù)記錄的數(shù)據(jù)集,以下關(guān)于數(shù)據(jù)清洗的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過刪除包含過多缺失值的行或列來處理缺失數(shù)據(jù),但這可能導(dǎo)致信息丟失B.對于錯誤數(shù)據(jù),可以通過與其他可靠數(shù)據(jù)源進(jìn)行對比或基于數(shù)據(jù)的邏輯關(guān)系進(jìn)行修正C.重復(fù)記錄可以直接保留,因?yàn)樗鼈儾粫?shù)據(jù)分析結(jié)果產(chǎn)生太大影響D.運(yùn)用數(shù)據(jù)填充技術(shù),如使用均值、中位數(shù)或眾數(shù)來填充缺失值,但需要謹(jǐn)慎選擇填充方法8、在數(shù)據(jù)分析的方差分析(ANOVA)中,以下關(guān)于組間方差和組內(nèi)方差的描述,錯誤的是()A.組間方差反映了不同組之間的差異B.組內(nèi)方差反映了組內(nèi)個體之間的差異C.如果組間方差顯著大于組內(nèi)方差,說明不同組之間存在顯著差異D.組間方差和組內(nèi)方差的比值越大,越說明組間差異不顯著9、當(dāng)分析兩個連續(xù)變量之間的線性關(guān)系時,以下哪個統(tǒng)計量的值在-1到1之間?()A.相關(guān)系數(shù)B.決定系數(shù)C.方差膨脹因子D.協(xié)方差10、在數(shù)據(jù)分析中,時間序列分析用于處理具有時間順序的數(shù)據(jù)。假設(shè)我們要分析股票價格的歷史數(shù)據(jù)。以下關(guān)于時間序列分析的描述,哪一項(xiàng)是錯誤的?()A.可以使用移動平均等方法對時間序列進(jìn)行平滑處理,去除噪聲B.自回歸模型(AR)和移動平均模型(MA)可以用于預(yù)測時間序列的未來值C.時間序列數(shù)據(jù)一定是平穩(wěn)的,不需要進(jìn)行平穩(wěn)性檢驗(yàn)D.可以結(jié)合多種時間序列模型,提高預(yù)測的準(zhǔn)確性11、數(shù)據(jù)分析中的假設(shè)檢驗(yàn)用于判斷樣本數(shù)據(jù)是否支持某個假設(shè)。假設(shè)我們要檢驗(yàn)一種新的營銷策略是否有效。以下關(guān)于假設(shè)檢驗(yàn)的描述,哪一項(xiàng)是不正確的?()A.零假設(shè)通常表示沒有差異或沒有效果B.通過計算檢驗(yàn)統(tǒng)計量和p值來決定是否拒絕零假設(shè)C.p值越小,說明拒絕零假設(shè)的證據(jù)越充分D.假設(shè)檢驗(yàn)的結(jié)果一定能夠準(zhǔn)確地反映實(shí)際情況,不存在誤差12、在數(shù)據(jù)分析中,數(shù)據(jù)預(yù)處理是一個重要的步驟。以下關(guān)于數(shù)據(jù)預(yù)處理的目的,錯誤的是?()A.去除數(shù)據(jù)中的噪聲和異常值,提高數(shù)據(jù)的質(zhì)量B.統(tǒng)一數(shù)據(jù)的格式和單位,便于后續(xù)的分析和處理C.對數(shù)據(jù)進(jìn)行編碼和轉(zhuǎn)換,使其適合特定的數(shù)據(jù)分析方法D.增加數(shù)據(jù)的數(shù)量,提高數(shù)據(jù)分析的結(jié)果的可靠性13、在進(jìn)行數(shù)據(jù)分析項(xiàng)目時,需要制定合理的項(xiàng)目計劃和流程。假設(shè)要在三個月內(nèi)完成一個大型企業(yè)的銷售數(shù)據(jù)分析項(xiàng)目,包括數(shù)據(jù)收集、清洗、分析和報告撰寫。以下哪種項(xiàng)目管理方法在確保按時交付高質(zhì)量結(jié)果方面更具指導(dǎo)意義?()A.瀑布模型B.敏捷開發(fā)C.螺旋模型D.以上方法效果相同14、假設(shè)我們有一組關(guān)于學(xué)生成績的數(shù)據(jù),包括語文、數(shù)學(xué)、英語等科目成績,要分析這些科目成績之間的相關(guān)性,以下哪種可視化方法較為直觀?()A.熱力圖B.雷達(dá)圖C.散點(diǎn)圖矩陣D.以上都不是15、在數(shù)據(jù)分析中,決策樹是一種常用的分類算法。假設(shè)要根據(jù)客戶的特征預(yù)測他們是否會購買某種產(chǎn)品,以下關(guān)于決策樹的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.決策樹通過對數(shù)據(jù)進(jìn)行逐步分裂,構(gòu)建樹狀結(jié)構(gòu)來進(jìn)行分類預(yù)測B.可以通過剪枝技術(shù)來防止決策樹過擬合,提高模型的泛化能力C.決策樹的生成過程完全是自動的,不需要人工干預(yù)和調(diào)整D.隨機(jī)森林是基于決策樹的集成學(xué)習(xí)算法,能夠提高預(yù)測的準(zhǔn)確性和穩(wěn)定性16、在數(shù)據(jù)分析中,數(shù)據(jù)清洗是至關(guān)重要的一步。假設(shè)我們有一個包含大量客戶信息的數(shù)據(jù)集,其中存在缺失值、錯誤數(shù)據(jù)和重復(fù)記錄等問題。為了得到高質(zhì)量、準(zhǔn)確且可用的數(shù)據(jù),以下哪種數(shù)據(jù)清洗方法通常是首先考慮的?()A.直接刪除包含缺失值或錯誤數(shù)據(jù)的記錄B.采用合適的方法填充缺失值,例如使用均值、中位數(shù)或其他統(tǒng)計值C.對重復(fù)記錄進(jìn)行隨機(jī)選擇保留D.忽略數(shù)據(jù)中的問題,直接進(jìn)行分析17、在數(shù)據(jù)分析的探索性數(shù)據(jù)分析(EDA)中,以下不屬于常用方法的是()A.繪制箱線圖B.進(jìn)行假設(shè)檢驗(yàn)C.計算數(shù)據(jù)的描述性統(tǒng)計量D.觀察數(shù)據(jù)的分布18、在數(shù)據(jù)分析中,數(shù)據(jù)可視化的工具有很多,其中Tableau是一種常用的工具。以下關(guān)于Tableau的描述中,錯誤的是?()A.Tableau可以連接多種數(shù)據(jù)源,進(jìn)行數(shù)據(jù)的導(dǎo)入和整合B.Tableau可以制作各種類型的圖表,進(jìn)行數(shù)據(jù)可視化C.Tableau的操作簡單易學(xué),適用于非專業(yè)用戶D.Tableau只能處理小規(guī)模數(shù)據(jù)集,對于大規(guī)模數(shù)據(jù)集無法處理19、數(shù)據(jù)分析中,數(shù)據(jù)分析方法的有效性可以通過多種方式進(jìn)行評估。以下關(guān)于數(shù)據(jù)分析方法有效性評估的說法中,錯誤的是?()A.數(shù)據(jù)分析方法的有效性可以通過與實(shí)際情況進(jìn)行對比來評估B.數(shù)據(jù)分析方法的有效性可以通過與其他方法進(jìn)行比較來評估C.數(shù)據(jù)分析方法的有效性可以通過模擬數(shù)據(jù)進(jìn)行測試來評估D.數(shù)據(jù)分析方法的有效性一旦確定就不能再進(jìn)行調(diào)整和改進(jìn)20、在進(jìn)行數(shù)據(jù)融合時,將多個數(shù)據(jù)源的數(shù)據(jù)整合在一起。假設(shè)我們有來自不同部門的銷售數(shù)據(jù)和客戶數(shù)據(jù),以下關(guān)于數(shù)據(jù)融合的描述,正確的是:()A.直接將不同數(shù)據(jù)源的數(shù)據(jù)簡單拼接,無需考慮數(shù)據(jù)格式和字段的一致性B.數(shù)據(jù)融合可能會引入重復(fù)和不一致的數(shù)據(jù),不需要處理C.建立統(tǒng)一的數(shù)據(jù)標(biāo)準(zhǔn)和數(shù)據(jù)清洗規(guī)則,能夠提高數(shù)據(jù)融合的質(zhì)量D.數(shù)據(jù)融合只適用于結(jié)構(gòu)相同的數(shù)據(jù)源,對于不同結(jié)構(gòu)的數(shù)據(jù)源無法進(jìn)行融合21、數(shù)據(jù)預(yù)處理中的特征工程用于創(chuàng)建有意義的特征。假設(shè)要為一個機(jī)器學(xué)習(xí)模型準(zhǔn)備輸入特征,以下關(guān)于特征工程的描述,正確的是:()A.直接使用原始數(shù)據(jù)的所有特征,不進(jìn)行任何處理和轉(zhuǎn)換B.隨意創(chuàng)建新的特征,不考慮其合理性和有效性C.基于對數(shù)據(jù)的理解和業(yè)務(wù)知識,進(jìn)行特征選擇、提取、構(gòu)建和變換,以提高模型的性能和可解釋性D.認(rèn)為特征工程對模型性能影響不大,不重視這一環(huán)節(jié)22、在進(jìn)行數(shù)據(jù)探索性分析時,以下關(guān)于發(fā)現(xiàn)數(shù)據(jù)中的異常值的方法,哪一項(xiàng)是最常用的?()A.計算數(shù)據(jù)的均值和標(biāo)準(zhǔn)差,超出一定范圍的值視為異常值B.繪制箱線圖,觀察超出箱體范圍的值C.對數(shù)據(jù)進(jìn)行排序,查看兩端的值D.隨機(jī)抽取部分?jǐn)?shù)據(jù)進(jìn)行檢查23、在進(jìn)行數(shù)據(jù)可視化時,若要展示數(shù)據(jù)的比例關(guān)系,以下哪種圖表較為合適?()A.柱狀圖B.餅圖C.折線圖D.箱線圖24、對于數(shù)據(jù)預(yù)處理中的缺失值處理,以下方法中,可能會引入偏差的是:()A.用均值填充B.用中位數(shù)填充C.用眾數(shù)填充D.直接刪除包含缺失值的記錄25、在選擇數(shù)據(jù)分析工具時,需要考慮多種因素。假設(shè)要為一個小型團(tuán)隊(duì)選擇合適的數(shù)據(jù)分析工具,以下關(guān)于工具選擇的描述,正確的是:()A.只追求功能強(qiáng)大的高端工具,不考慮成本和團(tuán)隊(duì)的使用難度B.隨意選擇一個流行的工具,不考慮其與團(tuán)隊(duì)需求的匹配度C.評估團(tuán)隊(duì)的技術(shù)水平、數(shù)據(jù)規(guī)模、分析需求和預(yù)算等因素,選擇易于使用、功能滿足需求且性價比高的數(shù)據(jù)分析工具,如Excel、Python、R等D.認(rèn)為一旦選擇了一個工具,就不能更換,不考慮工具的更新和發(fā)展26、數(shù)據(jù)可視化是數(shù)據(jù)分析的重要手段之一。以下關(guān)于數(shù)據(jù)可視化的作用,不準(zhǔn)確的是()A.數(shù)據(jù)可視化能夠?qū)?fù)雜的數(shù)據(jù)以直觀、易懂的圖形和圖表形式呈現(xiàn),幫助人們快速理解數(shù)據(jù)的含義和趨勢B.通過數(shù)據(jù)可視化,可以發(fā)現(xiàn)數(shù)據(jù)中的隱藏模式、異常值和關(guān)系,為進(jìn)一步的分析提供線索C.數(shù)據(jù)可視化只是為了讓數(shù)據(jù)看起來更美觀,對于數(shù)據(jù)分析的實(shí)質(zhì)內(nèi)容沒有太大幫助D.好的數(shù)據(jù)可視化能夠有效地傳達(dá)信息,支持決策制定,并與他人分享分析結(jié)果27、在數(shù)據(jù)分析項(xiàng)目中,項(xiàng)目管理和團(tuán)隊(duì)協(xié)作至關(guān)重要。假設(shè)一個團(tuán)隊(duì)正在進(jìn)行一個大型數(shù)據(jù)分析項(xiàng)目。以下關(guān)于項(xiàng)目管理的描述,哪一項(xiàng)是不正確的?()A.明確項(xiàng)目目標(biāo)和需求,制定詳細(xì)的項(xiàng)目計劃和時間表B.合理分配團(tuán)隊(duì)成員的任務(wù),充分發(fā)揮每個人的優(yōu)勢C.項(xiàng)目過程中不需要進(jìn)行溝通和協(xié)調(diào),各自完成自己的任務(wù)即可D.及時監(jiān)控項(xiàng)目進(jìn)度,對出現(xiàn)的問題和風(fēng)險進(jìn)行有效的管理和控制28、當(dāng)分析數(shù)據(jù)的分布特征時,以下哪個圖形可以直觀地展示數(shù)據(jù)的眾數(shù)?()A.直方圖B.莖葉圖C.箱線圖D.餅圖29、在數(shù)據(jù)分析中,數(shù)據(jù)倉庫的性能優(yōu)化是提高數(shù)據(jù)分析效率的關(guān)鍵。以下關(guān)于數(shù)據(jù)倉庫性能優(yōu)化的說法中,錯誤的是?()A.數(shù)據(jù)倉庫性能優(yōu)化可以從硬件、軟件和數(shù)據(jù)三個方面入手B.硬件方面可以通過升級服務(wù)器、增加內(nèi)存和存儲等方式提高性能C.軟件方面可以通過優(yōu)化數(shù)據(jù)庫設(shè)計、調(diào)整查詢語句和使用索引等方式提高性能D.數(shù)據(jù)方面可以通過增加數(shù)據(jù)量和提高數(shù)據(jù)質(zhì)量來提高性能30、在數(shù)據(jù)分析中,模型的過擬合和欠擬合是常見的問題。假設(shè)要訓(xùn)練一個預(yù)測房價的模型,以下關(guān)于防止過擬合和欠擬合的方法描述,正確的是:()A.不進(jìn)行數(shù)據(jù)劃分和交叉驗(yàn)證,直接在整個數(shù)據(jù)集上訓(xùn)練模型B.增加模型的復(fù)雜度,不考慮數(shù)據(jù)的特點(diǎn)和規(guī)律C.采用正則化技術(shù)、增加數(shù)據(jù)量、進(jìn)行特征選擇、使用合適的模型架構(gòu)和超參數(shù)調(diào)整等方法,平衡模型的復(fù)雜度和擬合能力,避免過擬合和欠擬合D.認(rèn)為模型的性能只取決于數(shù)據(jù),不關(guān)注模型的調(diào)整和優(yōu)化二、論述題(本大題共5個小題,共25分)1、(本題5分)在物流倉儲管理中,如何利用數(shù)據(jù)分析優(yōu)化貨物存儲布局,提高倉庫空間利用率和貨物出入庫效率。2、(本題5分)對于電商平臺的用戶信用評估,論述如何運(yùn)用數(shù)據(jù)分析構(gòu)建信用評估模型,防范信用風(fēng)險,促進(jìn)交易安全。3、(本題5分)在游戲行業(yè),玩家的游戲行為數(shù)據(jù)、付費(fèi)數(shù)據(jù)和游戲評價數(shù)據(jù)等大量存在。探討如何利用數(shù)據(jù)分析方法,比如用戶留存策略制定、游戲平衡性調(diào)整等,提升游戲的用戶體驗(yàn)和盈利能力,同時研究在數(shù)據(jù)作弊防范、游戲更新頻繁和玩家需求多樣化方面所面臨的困難及解決途徑。4、(本題5分)旅游業(yè)積累了大量的游客出行數(shù)據(jù)和消費(fèi)數(shù)據(jù)。論述如何通過數(shù)據(jù)分析技術(shù),像旅游目的地推薦模型、游客滿意度分析等,精準(zhǔn)定位旅游市場需求、優(yōu)化旅游產(chǎn)品設(shè)計,促進(jìn)旅游業(yè)的發(fā)展,同時思考數(shù)據(jù)季節(jié)性波動和地區(qū)差異
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025安全員-B證(項(xiàng)目經(jīng)理)考試題庫
- 2024年外轉(zhuǎn)子風(fēng)機(jī)項(xiàng)目資金籌措計劃書代可行性研究報告
- 2024年TC-22型氧化鋅脫硫劑項(xiàng)目資金需求報告
- 數(shù)學(xué)-云南省三校2025屆高三2月高考備考聯(lián)考卷(六)試題和答案
- 2025年度文化事業(yè)單位正規(guī)勞務(wù)派遣合作協(xié)議書
- 2025年度專業(yè)化學(xué)品倉庫庫房租賃及安全管理協(xié)議
- 二零二五年度員工股權(quán)激勵與公司可持續(xù)發(fā)展合同
- 2025年度房地產(chǎn)戰(zhàn)略合作協(xié)議書:房地產(chǎn)項(xiàng)目綠色建筑設(shè)計與綠色施工技術(shù)合同
- 2025年度臨時用工合同協(xié)議書:文化演出臨時演出人員及技術(shù)人員協(xié)議
- 2025年度網(wǎng)絡(luò)安全責(zé)任忠誠協(xié)議范本
- 2022年濟(jì)南工程職業(yè)技術(shù)學(xué)院單招綜合素質(zhì)考試筆試試題及答案解析
- 員工調(diào)整薪酬面談表
- 輔警報名登記表
- 初中數(shù)學(xué)競賽試題匯編
- 外研版英語五年級下冊第一單元全部試題
- 培養(yǎng)小學(xué)生課外閱讀興趣課題研究方案
- 部編版四年級語文下冊課程綱要
- 【課件】第二單元第三節(jié)漢族民歌課件-2021-2022學(xué)年高中音樂人音版(2019)必修音樂鑒賞
- 高中人音版必修 音樂鑒賞20人民音樂家課件
- 華文出版社三年級下冊書法教案
- GB_T 30789.3-2014 色漆和清漆 涂層老化的評價 缺陷的數(shù)量和大小以及外觀均勻變化程度的標(biāo)識 第3部分:生銹等級的評定
評論
0/150
提交評論