鄭州電力高等??茖W(xué)?!对O(shè)計基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷_第1頁
鄭州電力高等??茖W(xué)?!对O(shè)計基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷_第2頁
鄭州電力高等專科學(xué)?!对O(shè)計基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷_第3頁
鄭州電力高等??茖W(xué)?!对O(shè)計基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷_第4頁
鄭州電力高等??茖W(xué)?!对O(shè)計基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷_第5頁
全文預(yù)覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

裝訂線裝訂線PAGE2第1頁,共3頁鄭州電力高等專科學(xué)?!对O(shè)計基礎(chǔ)》

2023-2024學(xué)年第二學(xué)期期末試卷院(系)_______班級_______學(xué)號_______姓名_______題號一二三四總分得分一、單選題(本大題共15個小題,每小題1分,共15分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、圖像分割是將圖像分成不同的區(qū)域,每個區(qū)域具有相似的特征。假設(shè)要對醫(yī)學(xué)圖像進(jìn)行器官分割,以下關(guān)于圖像分割方法的描述,哪一項是不正確的?()A.基于閾值的分割方法簡單直接,但對于復(fù)雜圖像效果往往不佳B.基于邊緣檢測的分割方法通過尋找圖像中的邊緣來劃分區(qū)域,但容易受到噪聲影響C.基于深度學(xué)習(xí)的語義分割方法能夠?qū)崿F(xiàn)像素級別的分類,效果較好,但計算量較大D.圖像分割只適用于灰度圖像,對于彩色圖像無法進(jìn)行有效的分割2、在計算機(jī)視覺的圖像超分辨率重建中,提高低分辨率圖像的清晰度。假設(shè)要將一張模糊的圖像重建為清晰的高分辨率圖像,以下關(guān)于圖像超分辨率重建方法的描述,哪一項是不正確的?()A.基于插值的方法通過在像素之間插入新的值來增加圖像的分辨率,但可能會導(dǎo)致圖像模糊B.基于深度學(xué)習(xí)的方法能夠?qū)W習(xí)低分辨率圖像和高分辨率圖像之間的映射關(guān)系,重建出更清晰的圖像C.圖像超分辨率重建可以無限制地提高圖像的分辨率,不受原始圖像信息的限制D.為了獲得更好的重建效果,可以結(jié)合多種超分辨率重建方法或使用先驗知識3、在計算機(jī)視覺的圖像分類任務(wù)中,假設(shè)要處理類別不均衡的數(shù)據(jù)集,即某些類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)少于其他類別。以下關(guān)于處理類別不均衡的方法描述,正確的是:()A.直接使用傳統(tǒng)的分類算法,類別不均衡不會對結(jié)果產(chǎn)生明顯影響B(tài).過采樣少數(shù)類別的樣本可以增加其數(shù)量,但可能導(dǎo)致過擬合C.欠采樣多數(shù)類別的樣本能夠平衡數(shù)據(jù)集,但會丟失部分有用信息D.類別不均衡問題無法通過數(shù)據(jù)處理方法解決,只能通過改進(jìn)分類算法來應(yīng)對4、假設(shè)要構(gòu)建一個能夠?qū)嬜髌愤M(jìn)行真?zhèn)舞b定的計算機(jī)視覺系統(tǒng),需要對作品的筆觸、線條和風(fēng)格等特征進(jìn)行分析。以下哪種技術(shù)在書畫鑒定中可能具有應(yīng)用前景?()A.筆跡分析B.風(fēng)格遷移C.圖像風(fēng)格分析D.以上都是5、計算機(jī)視覺在工業(yè)檢測中的應(yīng)用越來越廣泛。假設(shè)要檢測電子電路板上的微小缺陷,以下哪種圖像采集設(shè)備可能提供更高的分辨率和精度?()A.普通數(shù)碼相機(jī)B.工業(yè)線陣相機(jī)C.手機(jī)攝像頭D.監(jiān)控攝像頭6、在圖像配準(zhǔn)任務(wù)中,需要將不同時間、不同視角或不同傳感器獲取的圖像進(jìn)行對齊。假設(shè)我們要將一張衛(wèi)星圖像與一張航拍圖像進(jìn)行配準(zhǔn),以下哪個因素對于配準(zhǔn)的準(zhǔn)確性影響最大?()A.圖像的分辨率差異B.圖像的旋轉(zhuǎn)和平移C.圖像的光照條件D.圖像中的噪聲7、計算機(jī)視覺中的視頻壓縮是為了減少視頻數(shù)據(jù)的存儲空間和傳輸帶寬。假設(shè)要對一段高清視頻進(jìn)行壓縮,同時保持較好的視覺質(zhì)量。以下關(guān)于視頻壓縮方法的描述,正確的是:()A.幀內(nèi)壓縮通過去除圖像內(nèi)部的冗余信息實現(xiàn)壓縮,對圖像質(zhì)量影響較小B.幀間壓縮利用相鄰幀之間的相似性進(jìn)行壓縮,但會引入明顯的失真C.運動估計在幀間壓縮中不重要,對壓縮效率提升作用不大D.視頻壓縮的碼率越低,壓縮效果越好,視覺質(zhì)量也越高8、計算機(jī)視覺在虛擬現(xiàn)實(VR)和增強(qiáng)現(xiàn)實(AR)中有著重要的應(yīng)用。假設(shè)要在VR游戲中實現(xiàn)真實的場景交互。以下關(guān)于計算機(jī)視覺在VR/AR中的描述,哪一項是不正確的?()A.可以通過對用戶的動作和姿態(tài)進(jìn)行識別,實現(xiàn)自然的交互操作B.能夠?qū)⑻摂M物體與真實場景進(jìn)行準(zhǔn)確的融合和匹配C.計算機(jī)視覺技術(shù)可以提高VR/AR體驗的沉浸感和真實感D.VR/AR中的計算機(jī)視覺應(yīng)用不存在任何技術(shù)挑戰(zhàn)和限制9、計算機(jī)視覺中的語義分割任務(wù)旨在為圖像中的每個像素分配一個類別標(biāo)簽。假設(shè)要對醫(yī)學(xué)圖像中的病變區(qū)域進(jìn)行精確分割,以下哪種技術(shù)可能對提高分割精度有較大幫助?()A.使用更深的卷積神經(jīng)網(wǎng)絡(luò)架構(gòu)B.引入多尺度特征融合C.增加訓(xùn)練數(shù)據(jù)中的噪聲D.減少網(wǎng)絡(luò)中的參數(shù)數(shù)量10、在計算機(jī)視覺中,圖像分類是一項基礎(chǔ)任務(wù)。假設(shè)我們有一組包含各種動物的圖像數(shù)據(jù)集,需要訓(xùn)練一個模型來準(zhǔn)確區(qū)分不同的動物類別。在選擇圖像分類模型時,以下哪種模型架構(gòu)通常在處理大規(guī)模圖像數(shù)據(jù)集時表現(xiàn)出色?()A.傳統(tǒng)的機(jī)器學(xué)習(xí)算法,如支持向量機(jī)(SVM)B.淺層的卷積神經(jīng)網(wǎng)絡(luò)(CNN)C.深度卷積神經(jīng)網(wǎng)絡(luò),如ResNetD.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)11、在計算機(jī)視覺的圖像檢索任務(wù)中,根據(jù)用戶的需求從圖像數(shù)據(jù)庫中查找相關(guān)圖像。假設(shè)要從一個大型的圖像庫中檢索包含特定物體的圖像,以下關(guān)于圖像檢索方法的描述,哪一項是不正確的?()A.可以基于圖像的內(nèi)容特征,如顏色、形狀和紋理等,進(jìn)行相似性度量和檢索B.深度學(xué)習(xí)模型能夠提取更具語義和判別力的特征,提高圖像檢索的準(zhǔn)確性C.圖像檢索的結(jié)果只取決于圖像的特征表示,與檢索算法的效率無關(guān)D.可以結(jié)合用戶的反饋和交互,不斷優(yōu)化圖像檢索的結(jié)果12、計算機(jī)視覺在自動駕駛領(lǐng)域有廣泛的應(yīng)用。假設(shè)一輛自動駕駛汽車需要識別道路上的交通標(biāo)志,以下關(guān)于自動駕駛中的計算機(jī)視覺應(yīng)用的描述,哪一項是不正確的?()A.多攝像頭融合可以提供更全面的道路信息,提高交通標(biāo)志識別的準(zhǔn)確性B.深度學(xué)習(xí)模型可以實時處理攝像頭采集的圖像,快速準(zhǔn)確地識別交通標(biāo)志C.除了交通標(biāo)志識別,計算機(jī)視覺還可以用于車道檢測、行人檢測和障礙物檢測等任務(wù)D.自動駕駛中的計算機(jī)視覺系統(tǒng)完全不需要其他傳感器(如雷達(dá)、激光雷達(dá))的輔助,僅依靠圖像信息就能實現(xiàn)安全可靠的駕駛13、在計算機(jī)視覺的目標(biāo)檢測中,對于小目標(biāo)的檢測往往具有較大的挑戰(zhàn)性。為了提高小目標(biāo)檢測的準(zhǔn)確率,以下哪種策略可能是有效的?()A.多尺度特征融合B.增加訓(xùn)練數(shù)據(jù)中的小目標(biāo)樣本C.使用更高分辨率的輸入圖像D.以上都是14、計算機(jī)視覺中的圖像增強(qiáng)旨在改善圖像的質(zhì)量和視覺效果。假設(shè)一張低對比度、有噪聲的醫(yī)學(xué)圖像需要進(jìn)行增強(qiáng)處理,以突出病變區(qū)域并減少噪聲的影響。以下哪種圖像增強(qiáng)技術(shù)最為適合?()A.直方圖均衡化B.中值濾波C.高斯濾波D.銳化濾波15、計算機(jī)視覺中的特征提取是非常關(guān)鍵的步驟。假設(shè)要從一組圖像中提取具有代表性的特征,以下關(guān)于特征提取方法的描述,正確的是:()A.手工設(shè)計的特征,如SIFT和HOG,在任何情況下都比深度學(xué)習(xí)自動學(xué)習(xí)的特征更有效B.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)能夠自動學(xué)習(xí)到圖像的多層次特征,具有很強(qiáng)的表達(dá)能力C.特征提取的結(jié)果對后續(xù)的圖像分類和目標(biāo)檢測任務(wù)沒有影響D.特征提取只需要考慮圖像的局部信息,全局信息不重要二、簡答題(本大題共4個小題,共20分)1、(本題5分)計算機(jī)視覺中如何進(jìn)行婦女服務(wù)中的需求分析?2、(本題5分)描述計算機(jī)視覺在消防中的應(yīng)用。3、(本題5分)簡述圖像的色彩模型轉(zhuǎn)換方法。4、(本題5分)解釋計算機(jī)視覺在刑偵中的應(yīng)用。三、應(yīng)用題(本大題共5個小題,共25分)1、(本題5分)使用計算機(jī)視覺方法,檢測地鐵站臺的人流擁堵情況。2、(本題5分)通過計算機(jī)視覺,對不同類型的糖畫作品進(jìn)行分類。3、(本題5分)運用深度學(xué)習(xí)模型,對古代青銅器的年代和工藝進(jìn)行鑒定。4、(本題5分)設(shè)計一個程序,通過計算機(jī)視覺識別不同款式的服裝。5、(本題5分)基于深度學(xué)習(xí),實現(xiàn)對田徑比賽中運動員起跑反應(yīng)時間的檢測。四、分析題(本大題共4個小題,共40分)1、(本題10分)研究某運動裝備品牌的新品預(yù)覽頁面設(shè)計,剖析其如何通過精彩的圖片和文字描述,激發(fā)消費者的購買欲望。2、(本題10分)分析某科技展

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論