




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)學(xué)校________________班級(jí)____________姓名____________考場(chǎng)____________準(zhǔn)考證號(hào)…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁(yè),共3頁(yè)桂林航天工業(yè)學(xué)院《計(jì)算機(jī)輔助設(shè)計(jì)》
2023-2024學(xué)年第二學(xué)期期末試卷題號(hào)一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、人臉識(shí)別是計(jì)算機(jī)視覺的一個(gè)重要應(yīng)用。假設(shè)一個(gè)公司使用人臉識(shí)別系統(tǒng)進(jìn)行員工考勤。以下關(guān)于人臉識(shí)別技術(shù)的描述,哪一項(xiàng)是錯(cuò)誤的?()A.它可以通過提取面部特征,如眼睛、鼻子和嘴巴的形狀和位置,來進(jìn)行身份識(shí)別B.能夠適應(yīng)不同的表情、姿態(tài)和光照變化,保持較高的識(shí)別準(zhǔn)確率C.人臉識(shí)別系統(tǒng)的安全性極高,不存在被欺騙或誤識(shí)別的可能性D.深度學(xué)習(xí)模型在人臉識(shí)別中表現(xiàn)出色,大大提高了識(shí)別性能2、計(jì)算機(jī)視覺中的人臉識(shí)別技術(shù)應(yīng)用廣泛。假設(shè)要在一個(gè)門禁系統(tǒng)中實(shí)現(xiàn)準(zhǔn)確的人臉識(shí)別,以下關(guān)于人臉識(shí)別方法的描述,正確的是:()A.基于幾何特征的人臉識(shí)別方法對(duì)姿態(tài)和光照變化具有很強(qiáng)的魯棒性B.基于模板匹配的方法能夠處理大規(guī)模的人臉數(shù)據(jù)庫(kù),并且識(shí)別速度快C.深度學(xué)習(xí)中的卷積神經(jīng)網(wǎng)絡(luò)在人臉識(shí)別中能夠?qū)W習(xí)到更具判別性的特征,但容易受到數(shù)據(jù)偏差的影響D.人臉識(shí)別系統(tǒng)一旦訓(xùn)練完成,就不需要更新和優(yōu)化,能夠一直保持高準(zhǔn)確率3、計(jì)算機(jī)視覺中的目標(biāo)跟蹤是指在視頻序列中持續(xù)跟蹤特定的目標(biāo)。以下關(guān)于目標(biāo)跟蹤的敘述,不正確的是()A.目標(biāo)跟蹤可以基于特征匹配、濾波算法或深度學(xué)習(xí)方法來實(shí)現(xiàn)B.目標(biāo)的外觀變化、遮擋和背景干擾等因素會(huì)給目標(biāo)跟蹤帶來挑戰(zhàn)C.目標(biāo)跟蹤在智能監(jiān)控、人機(jī)交互和自動(dòng)駕駛等領(lǐng)域有著廣泛的應(yīng)用D.目標(biāo)跟蹤算法能夠在任何情況下都準(zhǔn)確地跟蹤目標(biāo),不受復(fù)雜環(huán)境的影響4、計(jì)算機(jī)視覺在農(nóng)業(yè)中的應(yīng)用可以幫助監(jiān)測(cè)農(nóng)作物的生長(zhǎng)狀況。假設(shè)要通過圖像分析判斷農(nóng)作物的病蟲害程度,以下關(guān)于農(nóng)業(yè)計(jì)算機(jī)視覺應(yīng)用的描述,正確的是:()A.僅依靠農(nóng)作物的顏色特征就能準(zhǔn)確判斷病蟲害的程度B.不同農(nóng)作物品種和生長(zhǎng)階段對(duì)病蟲害判斷的影響不大C.結(jié)合圖像的紋理、形狀和顏色等多特征,可以更準(zhǔn)確地評(píng)估農(nóng)作物的健康狀況D.農(nóng)業(yè)環(huán)境的復(fù)雜性對(duì)計(jì)算機(jī)視覺的應(yīng)用沒有挑戰(zhàn)5、在計(jì)算機(jī)視覺的目標(biāo)識(shí)別任務(wù)中,假設(shè)目標(biāo)物體被部分遮擋,以下哪種模型架構(gòu)可能更有助于恢復(fù)被遮擋部分的信息?()A.多層感知機(jī)(MLP)B.卷積神經(jīng)網(wǎng)絡(luò)(CNN)C.循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)D.注意力機(jī)制(AttentionMechanism)6、在計(jì)算機(jī)視覺中,以下哪種方法常用于圖像的顯著目標(biāo)檢測(cè)中的高層語(yǔ)義信息利用?()A.深度學(xué)習(xí)B.圖模型C.注意力機(jī)制D.以上都是7、在計(jì)算機(jī)視覺中,圖像增強(qiáng)技術(shù)用于改善圖像的質(zhì)量。以下關(guān)于圖像增強(qiáng)的描述,不正確的是()A.圖像增強(qiáng)可以包括對(duì)比度增強(qiáng)、銳化、去噪等操作B.圖像增強(qiáng)的目的是使圖像更適合人類視覺觀察或后續(xù)的處理任務(wù)C.過度的圖像增強(qiáng)可能會(huì)導(dǎo)致圖像失真或引入噪聲D.圖像增強(qiáng)只對(duì)低質(zhì)量的圖像有效果,對(duì)于高質(zhì)量的圖像沒有必要進(jìn)行增強(qiáng)8、計(jì)算機(jī)視覺中的圖像分割任務(wù)旨在將圖像分割成不同的區(qū)域。假設(shè)要對(duì)一張風(fēng)景圖片進(jìn)行分割,區(qū)分天空、陸地和水面。以下關(guān)于圖像分割方法的描述,哪一項(xiàng)是錯(cuò)誤的?()A.基于閾值的分割方法簡(jiǎn)單快速,但對(duì)于復(fù)雜圖像效果不佳B.區(qū)域生長(zhǎng)法從種子點(diǎn)開始,逐步合并相似的區(qū)域C.深度學(xué)習(xí)中的全卷積網(wǎng)絡(luò)(FCN)在圖像分割中表現(xiàn)出色,能夠生成精確的分割結(jié)果D.圖像分割的結(jié)果總是清晰明確,不存在模糊或錯(cuò)誤的邊界9、在計(jì)算機(jī)視覺的圖像去噪任務(wù)中,假設(shè)要去除一張受到嚴(yán)重噪聲污染的圖像中的噪聲,同時(shí)盡可能保留圖像的細(xì)節(jié)和邊緣信息。以下哪種去噪方法可能更適合?()A.中值濾波,用鄰域中值代替像素值B.均值濾波,用鄰域平均值代替像素值C.基于深度學(xué)習(xí)的圖像去噪模型,如DnCNND.不進(jìn)行任何去噪處理,保留原始噪聲圖像10、假設(shè)要開發(fā)一個(gè)能夠自動(dòng)識(shí)別水果種類和品質(zhì)的計(jì)算機(jī)視覺系統(tǒng),用于水果分揀和質(zhì)量評(píng)估。在獲取水果圖像時(shí),可能會(huì)受到光照、角度和遮擋等因素的影響。為了提高識(shí)別的準(zhǔn)確性和魯棒性,以下哪種圖像預(yù)處理技術(shù)可能是關(guān)鍵?()A.圖像增強(qiáng)B.圖像去噪C.圖像歸一化D.圖像分割11、在計(jì)算機(jī)視覺的視覺跟蹤任務(wù)中,目標(biāo)在運(yùn)動(dòng)過程中可能會(huì)發(fā)生形變、遮擋和光照變化等情況。為了提高跟蹤的穩(wěn)定性和準(zhǔn)確性,以下哪種策略可能是有效的?()A.模型更新機(jī)制B.多特征融合C.抗遮擋處理D.以上都是12、計(jì)算機(jī)視覺中的圖像風(fēng)格遷移是一項(xiàng)有趣的任務(wù)。假設(shè)要將一幅油畫的風(fēng)格應(yīng)用到一張照片上,以下關(guān)于模型訓(xùn)練的要點(diǎn),哪一項(xiàng)是不正確的?()A.學(xué)習(xí)油畫和照片的特征表示,找到風(fēng)格和內(nèi)容的分離方式B.只關(guān)注風(fēng)格的遷移,不考慮照片原始內(nèi)容的保留C.采用對(duì)抗訓(xùn)練,使生成的圖像在風(fēng)格和內(nèi)容上達(dá)到平衡D.調(diào)整模型參數(shù),控制風(fēng)格遷移的強(qiáng)度和效果13、物體檢測(cè)是計(jì)算機(jī)視覺中的一項(xiàng)關(guān)鍵任務(wù)。假設(shè)一個(gè)智能監(jiān)控系統(tǒng)需要檢測(cè)場(chǎng)景中的特定物體,如背包、自行車等。以下關(guān)于物體檢測(cè)算法的描述,哪一項(xiàng)是不正確的?()A.基于深度學(xué)習(xí)的物體檢測(cè)算法能夠同時(shí)檢測(cè)多個(gè)物體,并給出它們的位置和類別B.可以通過滑動(dòng)窗口的方法在圖像中搜索可能的物體區(qū)域,然后進(jìn)行分類判斷C.物體檢測(cè)算法需要對(duì)大量的標(biāo)注圖像進(jìn)行訓(xùn)練,以學(xué)習(xí)不同物體的特征D.無論物體的大小、形狀和顏色如何變化,物體檢測(cè)算法都能準(zhǔn)確檢測(cè)到14、在計(jì)算機(jī)視覺的實(shí)際應(yīng)用中,模型的實(shí)時(shí)性是一個(gè)重要的考慮因素。以下關(guān)于實(shí)時(shí)性的描述,不正確的是()A.對(duì)于一些需要實(shí)時(shí)響應(yīng)的應(yīng)用,如自動(dòng)駕駛和工業(yè)檢測(cè),模型的處理速度至關(guān)重要B.模型的復(fù)雜度、計(jì)算資源和算法效率都會(huì)影響實(shí)時(shí)性C.可以通過模型壓縮、硬件加速和優(yōu)化算法等方法來提高模型的實(shí)時(shí)性D.實(shí)時(shí)性只與模型本身有關(guān),與硬件設(shè)備和系統(tǒng)架構(gòu)無關(guān)15、在計(jì)算機(jī)視覺的圖像生成任務(wù)中,假設(shè)要生成逼真的人臉圖像。以下關(guān)于生成模型的架構(gòu)選擇,哪一項(xiàng)是需要特別關(guān)注的?()A.選擇傳統(tǒng)的多層感知機(jī)(MLP)架構(gòu)B.采用生成對(duì)抗網(wǎng)絡(luò)(GAN)架構(gòu),通過對(duì)抗訓(xùn)練生成高質(zhì)量圖像C.運(yùn)用卷積神經(jīng)網(wǎng)絡(luò)(CNN)架構(gòu),但不使用池化層D.構(gòu)建循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)架構(gòu),處理圖像的序列信息16、計(jì)算機(jī)視覺在智能零售中的應(yīng)用可以改善購(gòu)物體驗(yàn)和提高運(yùn)營(yíng)效率。假設(shè)一個(gè)超市需要通過計(jì)算機(jī)視覺實(shí)現(xiàn)自動(dòng)結(jié)賬和庫(kù)存管理。以下關(guān)于計(jì)算機(jī)視覺在智能零售中的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以通過商品識(shí)別技術(shù)自動(dòng)識(shí)別顧客購(gòu)買的商品,實(shí)現(xiàn)快速結(jié)賬B.能夠?qū)崟r(shí)監(jiān)測(cè)貨架上商品的庫(kù)存水平,及時(shí)提醒補(bǔ)貨C.計(jì)算機(jī)視覺系統(tǒng)能夠準(zhǔn)確識(shí)別所有商品的包裝和標(biāo)簽,不受商品擺放方式和遮擋的影響D.可以分析顧客在店內(nèi)的行為和偏好,為營(yíng)銷策略提供數(shù)據(jù)支持17、計(jì)算機(jī)視覺在無人駕駛飛行器(UAV)中的應(yīng)用可以實(shí)現(xiàn)自主導(dǎo)航和環(huán)境感知。假設(shè)一個(gè)UAV需要在復(fù)雜的環(huán)境中飛行并避開障礙物。以下關(guān)于計(jì)算機(jī)視覺在UAV中的描述,哪一項(xiàng)是錯(cuò)誤的?()A.可以通過視覺傳感器獲取周圍環(huán)境的信息,包括地形、建筑物和其他障礙物B.能夠?qū)崟r(shí)分析圖像,計(jì)算與障礙物的距離和相對(duì)速度,為飛行決策提供依據(jù)C.計(jì)算機(jī)視覺在UAV中的應(yīng)用完全不需要與其他傳感器(如慣性測(cè)量單元)的數(shù)據(jù)融合D.可以利用深度學(xué)習(xí)算法進(jìn)行端到端的飛行控制,實(shí)現(xiàn)自主飛行18、計(jì)算機(jī)視覺中的行人重識(shí)別任務(wù)是在不同攝像頭中識(shí)別出特定的行人。假設(shè)要在一個(gè)大型火車站中尋找一個(gè)走失的兒童。以下關(guān)于行人重識(shí)別的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可以利用行人的服裝顏色、款式和攜帶物品等特征進(jìn)行重識(shí)別B.深度學(xué)習(xí)中的度量學(xué)習(xí)方法可以學(xué)習(xí)行人的特征表示,提高重識(shí)別的準(zhǔn)確率C.行人重識(shí)別不受行人姿態(tài)變化和攝像頭視角差異的影響D.可以通過構(gòu)建大規(guī)模的行人數(shù)據(jù)集進(jìn)行訓(xùn)練,提升模型的泛化能力19、計(jì)算機(jī)視覺中的動(dòng)作識(shí)別旨在識(shí)別視頻中的人體動(dòng)作。假設(shè)要對(duì)一段監(jiān)控視頻中的人員動(dòng)作進(jìn)行分類,以下關(guān)于動(dòng)作識(shí)別方法的描述,正確的是:()A.基于手工特征和傳統(tǒng)分類器的方法能夠處理復(fù)雜的動(dòng)作變化,準(zhǔn)確率高B.深度學(xué)習(xí)中的循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)在動(dòng)作識(shí)別中無法捕捉動(dòng)作的時(shí)空特征C.3D卷積神經(jīng)網(wǎng)絡(luò)能夠同時(shí)處理空間和時(shí)間維度的信息,適用于動(dòng)作識(shí)別任務(wù)D.動(dòng)作識(shí)別系統(tǒng)對(duì)視頻的拍攝角度和背景變化不敏感,具有很強(qiáng)的通用性20、在計(jì)算機(jī)視覺的動(dòng)作識(shí)別任務(wù)中,區(qū)分不同的人體動(dòng)作。假設(shè)要從一段視頻中識(shí)別出一個(gè)人是在跑步還是走路,以下關(guān)于動(dòng)作識(shí)別方法的描述,正確的是:()A.基于骨架信息的動(dòng)作識(shí)別方法對(duì)人體姿態(tài)的微小變化不敏感B.只考慮動(dòng)作的空間特征就能準(zhǔn)確識(shí)別不同的動(dòng)作C.融合時(shí)空特征和深度學(xué)習(xí)模型能夠提升動(dòng)作識(shí)別的準(zhǔn)確率D.動(dòng)作識(shí)別的結(jié)果不受視頻拍攝角度和背景干擾的影響21、對(duì)于圖像分類任務(wù),假設(shè)需要對(duì)大量的自然風(fēng)景圖像進(jìn)行分類,包括山脈、森林、海灘和沙漠等場(chǎng)景。這些圖像在光照、拍攝角度和季節(jié)等方面存在較大差異。為了提高圖像分類的準(zhǔn)確性和泛化能力,以下哪種策略是至關(guān)重要的?()A.增加數(shù)據(jù)增強(qiáng)操作,如旋轉(zhuǎn)、翻轉(zhuǎn)和顏色變換B.只使用少量具有代表性的圖像進(jìn)行訓(xùn)練C.選擇簡(jiǎn)單的分類模型,避免過擬合D.不進(jìn)行任何預(yù)處理,直接使用原始圖像訓(xùn)練模型22、對(duì)于視頻中的異常檢測(cè)任務(wù),假設(shè)要在一段監(jiān)控視頻中檢測(cè)出異常事件,如闖入、打斗等。以下哪種方法可能更有助于準(zhǔn)確檢測(cè)異常?()A.建立正常行為模型,對(duì)比檢測(cè)異常B.只關(guān)注視頻中的顯著運(yùn)動(dòng)區(qū)域C.隨機(jī)判斷視頻中的幀是否異常D.不進(jìn)行異常檢測(cè),直接忽略異常事件23、在計(jì)算機(jī)視覺中,三維重建是從二維圖像恢復(fù)物體的三維結(jié)構(gòu)。以下關(guān)于三維重建的敘述,不正確的是()A.可以通過多視圖幾何、結(jié)構(gòu)光或深度學(xué)習(xí)方法進(jìn)行三維重建B.三維重建在虛擬現(xiàn)實(shí)、文物保護(hù)和工業(yè)設(shè)計(jì)等領(lǐng)域有著廣泛的應(yīng)用C.三維重建的結(jié)果總是精確無誤的,能夠完全還原物體的真實(shí)三維結(jié)構(gòu)D.噪聲、遮擋和圖像質(zhì)量等因素會(huì)對(duì)三維重建的結(jié)果產(chǎn)生影響24、在計(jì)算機(jī)視覺的車牌識(shí)別任務(wù)中,假設(shè)要從不同角度和光照條件下拍攝的車輛圖像中準(zhǔn)確識(shí)別出車牌號(hào)碼。以下哪種技術(shù)可能有助于提高識(shí)別準(zhǔn)確率?()A.字符分割和單獨(dú)識(shí)別B.利用深度學(xué)習(xí)模型進(jìn)行端到端的識(shí)別C.只關(guān)注車牌的顏色特征D.隨機(jī)猜測(cè)車牌號(hào)碼25、在圖像去噪中,BM3D(Block-Matchingand3DFiltering)算法的優(yōu)勢(shì)在于()A.去噪效果好B.保持圖像細(xì)節(jié)C.計(jì)算效率高D.以上都是26、計(jì)算機(jī)視覺中的行人檢測(cè)是智能監(jiān)控系統(tǒng)中的重要任務(wù)。假設(shè)要在一個(gè)擁擠的公共場(chǎng)所中準(zhǔn)確檢測(cè)出行人,同時(shí)要排除其他類似物體的干擾。以下哪種行人檢測(cè)方法在這種復(fù)雜環(huán)境下具有更高的檢測(cè)率和較低的誤檢率?()A.基于HOG特征的行人檢測(cè)B.基于深度學(xué)習(xí)的行人檢測(cè)C.基于運(yùn)動(dòng)信息的行人檢測(cè)D.基于形狀模板的行人檢測(cè)27、計(jì)算機(jī)視覺中的顯著性檢測(cè)旨在找出圖像中引人注目的區(qū)域。假設(shè)要在一張復(fù)雜的自然風(fēng)景圖像中檢測(cè)顯著性區(qū)域,以下關(guān)于顯著性檢測(cè)方法的描述,哪一項(xiàng)是不正確的?()A.基于對(duì)比度的方法通過計(jì)算圖像區(qū)域與周圍區(qū)域的差異來確定顯著性B.基于頻域分析的方法可以從圖像的頻譜中提取顯著性信息C.深度學(xué)習(xí)方法能夠?qū)W習(xí)圖像的全局和局部特征,實(shí)現(xiàn)更準(zhǔn)確的顯著性檢測(cè)D.顯著性檢測(cè)的結(jié)果總是與人類的視覺注意力機(jī)制完全一致,沒有偏差28、在計(jì)算機(jī)視覺的人臉識(shí)別任務(wù)中,假設(shè)要實(shí)現(xiàn)一個(gè)能夠在不同光照和表情下準(zhǔn)確識(shí)別的系統(tǒng)。以下關(guān)于數(shù)據(jù)預(yù)處理的步驟,哪一項(xiàng)是最重要的?()A.對(duì)人臉圖像進(jìn)行歸一化處理,統(tǒng)一大小和亮度B.對(duì)圖像進(jìn)行銳化處理,增強(qiáng)面部特征C.給圖像添加藝術(shù)效果,提高美觀度D.隨機(jī)裁剪圖像,增加數(shù)據(jù)多樣性29、當(dāng)進(jìn)行視頻中的動(dòng)作識(shí)別時(shí),假設(shè)要分析一段運(yùn)動(dòng)員訓(xùn)練的視頻,識(shí)別出其中的各種動(dòng)作,如跑步、跳躍和舉重等。視頻中的動(dòng)作可能存在速度變化、遮擋和視角變化等問題。為了準(zhǔn)確識(shí)別這些動(dòng)作,以下哪種技術(shù)是關(guān)鍵的?()A.對(duì)每一幀圖像進(jìn)行獨(dú)立的動(dòng)作分類,然后綜合結(jié)果B.利用光流信息來捕捉視頻中的運(yùn)動(dòng)模式C.只關(guān)注視頻中的關(guān)鍵幀,忽略其他幀D.不考慮視頻的時(shí)序信息,將其視為一系列獨(dú)立的圖像30、在計(jì)算機(jī)視覺的場(chǎng)景理解任務(wù)中,假設(shè)要理解一個(gè)室內(nèi)場(chǎng)景的布局和物體關(guān)系。以下關(guān)于利用深度學(xué)習(xí)模型的方法,哪一項(xiàng)是不太恰當(dāng)?shù)??()A.使用卷積神經(jīng)網(wǎng)絡(luò)(CNN)提取圖像特征B.運(yùn)用循環(huán)神經(jīng)網(wǎng)絡(luò)(RNN)處理場(chǎng)景的序列信息C.直接使用未經(jīng)訓(xùn)練的神經(jīng)網(wǎng)絡(luò),期望其自動(dòng)學(xué)習(xí)場(chǎng)景理解D.結(jié)合CNN和RNN,構(gòu)建端到端的場(chǎng)景理解模型二、應(yīng)用題(本大題共5個(gè)小題,共25分)1、(本題5分)基于計(jì)算機(jī)視覺的智能商場(chǎng)導(dǎo)航系統(tǒng),通過實(shí)時(shí)圖像識(shí)別為顧客提供導(dǎo)航。2、(本題5分)運(yùn)用圖像分類技術(shù),對(duì)不同種類的珠寶首飾進(jìn)行分類。3、(本題5分)設(shè)計(jì)一個(gè)程序,通過計(jì)算機(jī)視覺識(shí)別不同品牌的掃描儀。4、(本題5分)運(yùn)用目標(biāo)檢測(cè)算法,從衛(wèi)星圖像中識(shí)別出特定的建筑物。5、(本題5分)基于深度學(xué)習(xí),實(shí)現(xiàn)對(duì)高速公路上車輛
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 廣播電視設(shè)備用網(wǎng)絡(luò)通信模塊考核試卷
- 城市垃圾填埋場(chǎng)規(guī)劃考核試卷
- 文化創(chuàng)意產(chǎn)業(yè)的資本運(yùn)作與市場(chǎng)發(fā)展動(dòng)態(tài)考核試卷
- 意外傷害保險(xiǎn)在旅游業(yè)的風(fēng)險(xiǎn)管理考核試卷
- 乳飲料的無乳糖配方設(shè)計(jì)與市場(chǎng)潛力考核試卷
- 文具企業(yè)產(chǎn)品線規(guī)劃考核試卷
- 葡萄加工售賣合同范本
- 旅游門票售賣合同范本
- 土建付款合同范本
- 第四季度營(yíng)銷工作重點(diǎn)計(jì)劃及時(shí)間表安排方案
- 《現(xiàn)代漢語(yǔ)》語(yǔ)音教學(xué)上課用課件
- 采購(gòu)流程各部門關(guān)系圖
- 《遙感導(dǎo)論》全套課件
- 力士樂工程機(jī)械液壓培訓(xùn)資料(共7篇)課件
- 村光伏發(fā)電申請(qǐng)書
- 降低混凝土路面裂縫發(fā)生率QC小組資料
- 【教師必備】部編版四年級(jí)語(yǔ)文上冊(cè)第二單元【集體備課】
- 支氣管擴(kuò)張的護(hù)理PPT
- 施工現(xiàn)場(chǎng)專項(xiàng)消防安全檢查表
- 學(xué)習(xí)強(qiáng)國(guó)挑戰(zhàn)答題題庫(kù)1600題
- 鋼結(jié)構(gòu)廠房吊裝安裝監(jiān)理控制要點(diǎn)演示文稿
評(píng)論
0/150
提交評(píng)論