




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
湖南省長沙市中學(xué)雅培粹學(xué)校2025屆八年級數(shù)學(xué)第二學(xué)期期末調(diào)研模擬試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每題4分,共48分)1.下列是一次函數(shù)的是()A. B. C. D.2.如圖,在△ABC中,BC=15,B1、B2、…B9、C1、C2、…C9分別是AB、AC的10等分點,則B1C1+B2C2+…+B9C9的值是()A.45 B.55 C.67.5 D.1353.如果,那么代數(shù)式的值為A. B. C. D.4.下列式子為最簡二次根式的是()A.5 B.12 C.a(chǎn)2 D.5.將方程x2+4x+3=0配方后,原方程變形為()A. B. C. D.6.已知x1,x2是方程的兩個根,則的值為(
)A.1 B.-1 C.2 D.-27.如圖,的中線、交于點,連接,點、分別為、的中點,,,則四邊形的周長為()A.12 B.14 C.16 D.188.將直線y=3x-1向上平移1個單位長度,得到的一次函數(shù)解析式為()A.y=3x B.y=3x+1 C.y=3x+2 D.y=3x+39.用科學(xué)記數(shù)法表示,結(jié)果為()A. B. C. D.10.如圖,正方形ABCD的對角線AC與BD相交于點O.將∠COB繞點O順時針旋轉(zhuǎn),設(shè)旋轉(zhuǎn)角為α(0<α<90°),角的兩邊分別與BC,AB交于點M,N,連接DM,CN,MN,下列四個結(jié)論:①∠CDM=∠COM;②CN⊥DM;③△CNB≌△DMC;④AN2+CM2=MN2;其中正確結(jié)論的個數(shù)是()A.1 B.2 C.3 D.411.如圖,平行四邊形ABCD中,M是BC的中點,且AM=9,BD=12,AD=10,則ABCD的面積是()
A.30 B.36 C.54 D.7212.如圖,□ABCD中,∠C=108°,BE平分∠ABC,則∠AEB等于()A.18° B.36° C.72° D.108°二、填空題(每題4分,共24分)13.如圖,在平面直角坐標系中,函數(shù)y=2x和y=-x的圖象分別為直線l1,l2,過點(1,0)作x軸的垂線交l1于點A1,過A1點作y軸的垂線交l2于點A2,過點A2作x軸的垂線交l1于點A3,過點A3作y軸的垂線交l2于點A4,…依次進行下去,則點A2019的坐標為______.14.如圖,平行四邊形ABCD的對角線AC,BD相交于點O,請你添加一個適當?shù)臈l件________使其成為菱形(只填一個即可).15.如圖,點P是∠BAC的平分線AD上一點,PE⊥AC于點E,且AP=2,∠BAC=60°,有一點F在邊AB上運動,當運動到某一位置時△FAP面積恰好是△EAP面積的2倍,則此時AF的長是______.16.在平面直角坐標系中,將點向右平移1個單位,再向下平移2個單位得到點,則點的坐標為_________.17.分解因式:m2nmn=_____。18.在函數(shù)y=中,自變量x的取值范圍是_________.三、解答題(共78分)19.(8分)如圖,△ABC三個頂點的坐標分別為A(1,1),B(4,2),C(3,4).(1)請畫出△ABC向左平移5個單位長度后得到的△ABC;(2)請畫出△ABC關(guān)于原點對稱的△ABC;(3)在軸上求作一點P,使△PAB的周長最小,請畫出△PAB,并直接寫出P的坐標.20.(8分)如圖,點N(0,6),點M在x軸負半軸上,ON=3OM.A為線段MN上一點,AB⊥x軸,垂足為點B,AC⊥y軸,垂足為點C.(1)寫出點M的坐標;(2)求直線MN的表達式;(3)若點A的橫坐標為-1,求矩形ABOC的面積.21.(8分)如圖,已知,直線y=2x+3與直線y=-2x-1,求ΔABC的面積.22.(10分)“保護環(huán)境,人人有責(zé)”,為了更好的利用水資源,某污水處理廠決定購買、兩型號污水處理設(shè)備共10臺,其信息如下表.(1)設(shè)購買型設(shè)備臺,所需資金共為萬元,每月處理污水總量為噸,試寫出與之間的函數(shù)關(guān)系式,與之間的函數(shù)關(guān)系式;(2)經(jīng)預(yù)算,該污水處理廠購買設(shè)備的資金不超過88萬元,每月處理污水總量不低于2080噸,請你列舉出所有購買方案,并指出哪種方案最省錢,需多少資金?23.(10分)如圖,四邊形ABCD是正方形,E、F分別是AB和AD延長線上的點,BE=DF,在此圖中是否存在兩個全等的三角形,并說明理由;它們能夠由其中一個通過旋轉(zhuǎn)而得到另外一個嗎?簡述旋轉(zhuǎn)過程.24.(10分)為了了解初中階段女生身高情況,從某中學(xué)初二年級120名女生中隨意抽出40名同齡女生的身高數(shù)據(jù),經(jīng)過分組整理后的頻數(shù)分布表及頻數(shù)分布直方圖如圖所示:結(jié)合以上信息,回答問題:(1)a=______,b=______,c=______.(2)請你補全頻數(shù)分布直方圖.(3)試估計該年級女同學(xué)中身高在160~165cm的同學(xué)約有多少人?25.(12分)如圖,在△ABC中,AD⊥BC,垂足為D,∠B=60°,∠C=45°.(1)求∠BAC的度數(shù)。(2)若AC=2,求AD的長。26.先化簡,再求值:,其中a=1+.
參考答案一、選擇題(每題4分,共48分)1、B【解析】
根據(jù)一次函數(shù)的定義條件進行逐一分析即可.【詳解】A.中自變量次數(shù)不為1,不是一次函數(shù);B.,是一次函數(shù);C.中自變量次數(shù)不為1,不是一次函數(shù);D.中沒有自變量次數(shù)不為1,不是一次函數(shù).故選:B【點睛】本題主要考查了一次函數(shù)的定義,一次函數(shù)y=kx+b的定義條件是:k、b為常數(shù),k≠0,自變量次數(shù)為1.2、C【解析】
當B1、C1是AB、AC的中點時,B1C1=BC;當B1,B2,C1,C2分別是AB,AC的三等分點時,B1C1+B2C2=BC+BC;…當B1,B2,C1,…,Cn分別是AB,AC的n等分點時,B1C1+B2C2+…+Bn﹣1Bn﹣1=BC+BC+…+BC=BC=7.1(n﹣1);當n=10時,7.1(n﹣1)=67.1;故B1C1+B2C2+…+B9C9的值是67.1.故選C.3、A【解析】分析:根據(jù)分式混合運算的法則進行化簡,再把整體代入即可.詳解:原式,∵,∴原式.故選A.點睛:考查分式的化簡求值,熟練掌握分式混合運算的法則是解題的關(guān)鍵.4、A【解析】
解:選項A,被開方數(shù)不含分母;被開方數(shù)不含能開得盡方的因數(shù)或因式,A符合題意;選項B,被開方數(shù)含能開得盡方的因數(shù)或因式,B不符合題意;選項C,被開方數(shù)含能開得盡方的因數(shù)或因式,C不符合題意;選項D,被開方數(shù)含分母,D不符合題意,故選A.5、A【解析】
把常數(shù)項3移項后,應(yīng)該在左右兩邊同時加上一次項系數(shù)4的一半的平方.【詳解】移項得,x2+4x=?3,配方得,x2+4x+4=?3+4,即(x+2)2=1.故答案選A.【點睛】本題考查了一元二次方程,解題的關(guān)鍵是根據(jù)配方法解一元二次方程.6、B【解析】
直接利用根與系數(shù)的關(guān)系可求得答案.【詳解】∵x1、x2是方程的兩個根,
∴x1+x2=-1,
故選:B.【點睛】此題考查根與系數(shù)的關(guān)系,掌握方程兩根之和等于-是解題的關(guān)鍵.7、B【解析】
根據(jù)三角形中位線定理,可得ED=FG=BC=4,GD=EF=AO=3,進而求出四邊形DEFG的周長.【詳解】∵BD,CE是△ABC的中線,∴ED∥BC且ED=BC,∵F是BO的中點,G是CO的中點,∴FG∥BC且FG=BC,∴ED=FG=BC=4,同理GD=EF=AO=3,∴四邊形DEFG的周長為3+4+3+4=1.故選B.【點睛】本題考查了三角形中位線定理:三角形的中位線平行于第三邊,并且等于第三邊的一半.三角形中位線的性質(zhì)定理,為證明線段相等和平行提供了依據(jù).8、A【解析】
根據(jù)函數(shù)解析式“上加下減”的原則進行解答即可.【詳解】解:由“上加下減”的原則可知,將直線y=3x-1向上平移1個單位長度,得到的一次函數(shù)解析式為y=3x-1+1=3x.故選:A.【點睛】本題考查一次函數(shù)的圖象與幾何變換,熟知函數(shù)解析式“上加下減”的原則是解答此題的關(guān)鍵.9、B【解析】
小于1的正數(shù)也可以利用科學(xué)記數(shù)法表示,一般形式為a×10﹣n,與較大數(shù)的科學(xué)記數(shù)法不同的是其所使用的是負指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.【詳解】﹣0.0000014=﹣1.4×10﹣1.故選B.【點睛】本題考查了用科學(xué)記數(shù)法表示較小的數(shù).一般形式為a×10﹣n,其中1≤|a|<10,n為由原數(shù)左邊起第一個不為零的數(shù)字前面的0的個數(shù)所決定.10、C【解析】
利用正方形的性質(zhì)進行等角轉(zhuǎn)換,正方形ABCD的對角線AC與BD相交于點O,AC⊥BD,∠COM+∠MOB=∠BON+∠MOB=90°,∠COM=∠BON,OB=OC,∠OBN=∠OCM=45°,△ONB≌△OMC,得NB=MC,又BC=CD,∠DCM=∠CBN=90°,故△CNB≌△DMC【詳解】解:∵正方形ABCD的對角線AC與BD相交于點O∴AC⊥BD,∠COM+∠MOB=∠BON+∠MOB=90°∴∠COM=∠BON,OB=OC,∠OBN=∠OCM=45°∴△ONB≌△OMC∴NB=MC又∵BC=CD,∠DCM=∠CBN=90°∴△CNB≌△DMC∴③結(jié)論正確;由△CNB≌△DMC,得出∠BCN=∠CDM又∠CDM+∠CMD=90°∴∠BCN+∠CMD=90°∴CN⊥DM故②結(jié)論正確.【點睛】利用正方形的性質(zhì)進行等角轉(zhuǎn)換,還有三角形全等的判定,熟練掌握,方能輕松解題.11、D【解析】
求?ABCD的面積,就需求出BC邊上的高,可過D作DE∥AM,交BC的延長線于E,那么四邊形ADEM也是平行四邊形,則AM=DE;在△BDE中,三角形的三邊長正好符合勾股定理的逆定理,因此△BDE是直角三角形;可過D作DF⊥BC于F,根據(jù)三角形面積的不同表示方法,可求出DF的長,也就求出了BC邊上的高,由此可求出四邊形ABCD的面積.【詳解】作DE∥AM,交BC的延長線于E,則ADEM是平行四邊形,
∴DE=AM=9,ME=AD=10,
又由題意可得,BM=BC=AD=5,則BE=15,
在△BDE中,∵BD2+DE2=144+81=225=BE2,
∴△BDE是直角三角形,且∠BDE=90°,
過D作DF⊥BE于F,
則DF=,
∴S?ABCD=BC?FD=10×=1.
故選D.【點睛】此題主要考查平行四邊形的性質(zhì)和勾股定理的逆定理,正確地作出輔助線,構(gòu)造直角三角形是解題的關(guān)鍵.12、B【解析】
首先根據(jù)平行四邊形的性質(zhì),得出∠ABC的度數(shù),又由BE平分∠ABC,得出∠ABE=∠CBE,∠AEB和∠CBE是內(nèi)錯角,相等,即可得出∠AEB.【詳解】解:∵□ABCD中,∠C=108°,∴∠ABC=180°-108°=72°又∵BE平分∠ABC,∴∠ABE=∠CBE=36°又∵∠AEB=∠CBE∴∠AEB=36°故答案為B.【點睛】此題主要考查利用平行四邊形的性質(zhì)求角的度數(shù),熟練掌握即可解題.二、填空題(每題4分,共24分)13、(-21009,-21010)【解析】
根據(jù)一次函數(shù)圖象上點的坐標特征可得出點A1、A2、A3、A4、A5、A6、A7、A8等的坐標,根據(jù)坐標的變化找出變化規(guī)律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n為自然數(shù))”,依此規(guī)律結(jié)合2019=504×4+3即可找出點A2019的坐標.【詳解】當x=1時,y=2,∴點A1的坐標為(1,2);當y=-x=2時,x=-2,∴點A2的坐標為(-2,2);同理可得:A3(-2,-4),A4(4,-4),A5(4,8),A6(-8,8),A7(-8,-16),A8(16,-16),A9(16,32),…,∴A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n為自然數(shù)).∵2019=504×4+3,∴點A2019的坐標為(-2504×2+1,-2504×2+2),即(-21009,-21010).故答案為(-21009,-21010).【點睛】本題考查了一次函數(shù)圖象上點的坐標特征、正比例函數(shù)的圖象以及規(guī)律型中點的坐標,根據(jù)坐標的變化找出變化規(guī)律“A4n+1(22n,22n+1),A4n+2(-22n+1,22n+1),A4n+3(-22n+1,-22n+2),A4n+4(22n+2,-22n+2)(n為自然數(shù))”是解題的關(guān)鍵.14、AC⊥BC或∠AOB=90°或AB=BC(填一個即可).【解析】試題分析:根據(jù)菱形的判定定理,已知平行四邊形ABCD,添加一個適當?shù)臈l件為:AC⊥BC或∠AOB=90°或AB=BC使其成為菱形.考點:菱形的判定.15、1.【解析】
作PH⊥AB于H,根據(jù)角平分線的性質(zhì)得到PH=PE,根據(jù)余弦的定義求出AE,根據(jù)三角形的面積公式計算即可.【詳解】作PH⊥AB于H,∵AD是∠BAC的平分線,PE⊥AC,PH⊥AB,∴PH=PE,∵P是∠BAC的平分線AD上一點,∴∠EAP=30°,∵PE⊥AC,∴∠AEP=90°,∴AE=AP×cos∠EAP=3,∵△FAP面積恰好是△EAP面積的2倍,PH=PE,∴AF=2AE=1,故答案為1.【點睛】本題考查的是角平分線的性質(zhì),掌握角的平分線上的點到角的兩邊的距離相等是解題的關(guān)鍵.16、(-1,1)【解析】
根據(jù)橫坐標,右移加,左移減;縱坐標,上移加,下移減可得答案.【詳解】解:將點向右平移1個單位,再向下平移2個單位得到點,則點的坐標為(-1,1).故答案為(-1,1).【點睛】本題考查了坐標系中點的平移規(guī)律.平移中點的變化規(guī)律是:橫坐標右移加,左移減;縱坐標上移加,下移減.17、n(m-)2【解析】
原式提取n,再利用完全平方公式分解即可.【詳解】解:原式=n(m2-m+)=n(m-)2,
故答案為:n(m-)2【點睛】此題考查了提公因式法與公式法的綜合運用,熟練掌握因式分解的方法是解本題的關(guān)鍵.18、x≤1【解析】
根據(jù)二次根式的性質(zhì)列出不等式,求出不等式的取值范圍即可.【詳解】若使函數(shù)y=有意義,∴1?x≥0,即x≤1.故答案為x≤1.【點睛】本題主要考查了函數(shù)自變量取值范圍的知識點,注意:二次根式中的被開方數(shù)必須是非負數(shù),否則二次根式無意義.三、解答題(共78分)19、(1)圖形見解析;(2)圖形見解析;(3)圖形見解析,點P的坐標為:(2,0)【解析】
(1)按題目的要求平移就可以了關(guān)于原點對稱的點的坐標變化是:橫、縱坐標都變?yōu)橄喾磾?shù),找到對應(yīng)點后按順序連接即可(3)AB的長是不變的,要使△PAB的周長最小,即要求PA+PB最小,轉(zhuǎn)為了已知直線與直線一側(cè)的兩點,在直線上找一個點,使這點到已知兩點的線段之和最小,方法是作A、B兩點中的某點關(guān)于該直線的對稱點,然后連接對稱點與另一點.【詳解】(1)△A1B1C1如圖所示;(2)△A2B2C2如圖所示;(3)△PAB如圖所示,點P的坐標為:(2,0)【點睛】1、圖形的平移;2、中心對稱;3、軸對稱的應(yīng)用20、(1)(-2,0);(2)該y=3x+6;(3)S矩形ABOC=3.【解析】
(1)由點N(0,6),得出ON=6,再由ON=3OM,求得OM=2,得出點M的坐標;
(2)設(shè)出直線MN的解析式為:y=kx+b,代入M、N兩點求得答案即可;
(3)將A點橫坐標代入y=3x+6,求出縱坐標,即可表示出S矩形ABOC.【詳解】(1)∵N(0,6)∴ON=6∵ON=3OM∴OM=2∴M點坐標為(-2,0);(2)該直線MN的表達式為y=kx+b,分別把M(-2,0),N(0,6)代入,得解得∴直線MN的表達式為y=3x+6.(3)在y=3x+6中,當x=-1時,y=3,∴OB=1,AB=3,∴S矩形ABOC=1×3=3.【點睛】本題考查的知識點是待定系數(shù)法求函數(shù)解析式和利用一次函數(shù)解決實際問題和矩形的面積的運用,解題關(guān)鍵是利用圖像進行解題.21、2【解析】
將直線y=2x+3與直線y=?2x?1組成方程組,求出方程組的解即為C點坐標,再求出A、B的坐標,得到AB的長,即可求出△ABC的面積.【詳解】解:將直線y=2x+3與直線y=-2x-1聯(lián)立成方程組得:解得,即C點坐標為(-1,1).∵直線y=2x+3與y軸的交點坐標為(0,3),直線y=-2x-1與y軸的交點坐標為(0,-1),∴AB=4,∴.【點睛】本題考查了兩條直線相交的問題,熟知函數(shù)圖象上點的坐標特征是解題的關(guān)鍵.22、見解析【解析】分析:(1)根據(jù)等量關(guān)系:所需資金=A型設(shè)備臺數(shù)×單價+B型設(shè)備臺數(shù)×單價,可得出W與x函數(shù)關(guān)系式;處理污水總量=A型設(shè)備臺數(shù)×每臺處理污水量+B型設(shè)備臺數(shù)×每臺處理污水量,可得出y與x函數(shù)關(guān)系式;(2)利用w≤88,y≥2080,求出x的取值范圍.再判斷哪種方案最省錢及需要多少資金.詳解:(1)∴與函數(shù)關(guān)系式為:又∴與函數(shù)關(guān)系式為:(2)由得又為整數(shù),∴取2,3,4∴共有三種方案在中,隨的增大而增大,∴當時,最小為:(萬元)∴方案一最省錢,需要資金84萬元.點睛:本題考查的是用一元一次不等式來解決實際問題,此類題是近年中考中的熱點問題23、在此圖中存在兩個全等的三角形,即△CDF≌△CBE.△CDF是由△CBE繞點C沿順時針方向旋轉(zhuǎn)90°得到的.理由見解析.【解析】
在△CDF和△CBE中,根據(jù)正方形的性質(zhì)知DC=BC、已知條件DF=BE可以證得△CDF≌△CBF.【詳解】解:在此圖中存在兩個全等的三角形,即△CDF≌△CBE.理由如下:∵點F在正方形ABCD的邊AD的延長線上,∴∠CDF=∠CDA=90°;在△CDF和△CBE中,,∴△CDF≌△CBE(SAS),∴∠FCD=∠ECB,CF=CE,∴∠FCE=∠FCD+∠DCE=∠ECB+∠DCE=∠DCB=90°,∴△CDF是由△
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 勞動合同忠誠協(xié)議書
- 電頻車維修合同協(xié)議書
- 2025年股權(quán)轉(zhuǎn)讓合同范本
- 房屋借住合同協(xié)議書范本
- 球桌轉(zhuǎn)賣合同協(xié)議書
- 戶外兒童樂園合同協(xié)議書
- 買賣銅線合同協(xié)議書模板
- 2025年申請無薪留職合同
- 2025鯧魚養(yǎng)殖合同模板
- 渣土車工程合同協(xié)議書
- 腰椎病的康復(fù)護理
- 2024-2025學(xué)年度第二學(xué)期人教版八年級下冊物理暑假作業(yè)含答案第一天
- 2024年中國甘脲行業(yè)調(diào)查報告
- 浙江省2025年中考第二次模擬考試英語試題(含答案無聽力原文及音頻)
- 初創(chuàng)公司薪酬方案
- 2025年大學(xué)期末民法試題及答案
- 《輔助生殖技術(shù)探究》課件
- 中醫(yī)兒科學(xué)研究進展知到課后答案智慧樹章節(jié)測試答案2025年春浙江中醫(yī)藥大學(xué)
- 森林火災(zāi)防控-深度研究
- 2016中國石油石化企業(yè)信息技術(shù)交流大會論文公示名單
- 地下車庫車位劃線合同
評論
0/150
提交評論