




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
HomeIsWhereYourFinTechLoanIs?
TamannaSinghDubey?
FirstDraft:October,2024ThisDraft:March,2025
Abstract
IstudythespillovereffectofunsecuredFinTechlendingonmortgagemarkets.Usingquasi-exogenousvariationinLendingClubloanactivityduetoitspartnershipwiththeBancAllianceconsortiumofcommunitybanksinFebruary2015,IpresentcausalevidencethatincreaseinunsecuredpersonalloansbyLendingClubresultedinasignificantincreaseinoverallmortgageactivityinanarea.Thisspilloverismorepronouncedfornewhomepurchaseactivityversusmortgagerefinancings,andforborrowerswhofacelargerinformationfrictionsinthemortgagemarket.Despitetheincreaseinmortgagelending,Ishowthatmortgagedefaultratesdidnotincrease.Overall,myfindingsuncoveranewbenefitofFinTechlendingandprovideimportantinputstoongoingpolicydebatesintheunsecuredFinTechlendingmarket.
Keywords:FinTechlending,Mortgagelending,Informationfrictions
JELClassification:G20,G21,G23
?Iamespeciallygratefultomydissertationchair,AmiyatoshPurnanandam,forguidanceandsupport.I
amalsogratefultomycommitteemembers,EdwardKim,JeremyKress,UdayRajan,andMelvinStephens.IthankSnehalBanerjee,SugatoBhattacharya,PulakGhosh,AnkitKalda,GeorgeKorniotis,MPNarayanan,PaoloPasquariello,SrinivasaraghavanSriram,BorisVallee,andparticipantsattheFederalReserveBoardofGovernors,IndianSchoolofBusiness,TexasA&MUniversity,UniversityofHongKong,UniversityofMiami,UniversityofMichigan,andWarwickUniversityfortheirhelpfulcommentsonthepaper.IthanktheMitsuiLifeFinancialResearchCenterforprovidingfinancialsupportforthisresearch.
?RossSchoolofBusiness,UniversityofMichigan;email:
tsdubey@.
PAGE
39
Oneoftheprimaryobjectivesoffinancialintermediariesistoreduceinformationfrictionsincreditmarkets.Traditionally,theyhaveachievedthisbyusingavarietyofscreeningdevicessuchasrequiringborrowerstopostcollateral,orbyofferingthemamenuofcontracts.Whilethesedevicesallowlenderstodistinguishbetweenborrowerswhoarecreditworthyandthosewhoarenot,somestillfacefinancingfrictionsandaredeniedcredit(
Gortonand
Winton
,
2003
).Mechanismsandinstitutionalarrangementsthatalleviatethesefrictionshaveafirstorderimpactontheefficiencyofcreditmarkets,aswellasonthewelfareofborrowers.Canrecentadvancesinlendingtechnologies,suchasthesignificantriseofFinTechlenders,improvesubsequentoutcomesincreditmarketsfortheseborrowers?
Toaddressthislargerquestion,IexaminetheimpactofunsecuredFinTechlendingonborrowers’accesstotheU.S.mortgagemarket.WhileseveralstudieshaveexploredtheimpactofFinTechlendingwithinitsownmarket,mypaperisamongthefirsttoexamineitsspillovereffectsonthemortgagemarketinacausalmanner.Ononehand,FinTechlenderscanalleviatecreditmarketfrictionsbyusingsuperiorscreeningtechnologyandalternativedata,therebyimprovingcreditaccessfornewandexistingborrowersthroughcheaperdebtconsolidationandtheprovisionofnewloans(
Berg,Burg,Gombovi′c,andPuri
,
2020
;
DiMaggio,Ratnadiwakara,andCarmichael
,
2022
).Ontheotherhand,ifFinTechlendersaremerely“skimming”thebestborrowersfromtheexistingpool,orifborrowersuseFinTechloansforconspicuousconsumption,theirpresencemightnotleadtoanysubstantialimprovementinborroweroutcomes(
DiMaggioandYao
,
2021
).Therefore,mystudyshedslightonanimportantandunresolvedempiricalquestion.
Inaddition,mystudyisimportantfortwootherreasons.First,unsecuredFinTechlendinghasgrowntenfoldoverthepastdecade,whilethemortgagemarketrepresentsasubstantialshareofhouseholddebtintheU.S.,makingthisaneconomicallysignificantsetting.
1
,
2
Second,
1Source:Transunion
2
Iacoviello
(
2011
)findthattwo-thirdsofthewealthofamedianU.S.householdconsistsofhousingwealth.Forthebottom90%wealthgroup,
Smith,Zidar,andZwick
(
2021
)showthat62%ofnon-pensionwealthiscomposedofhousing.
asFinTechloansaretypicallysmallerthanmortgages,mystudyprovidesinsightintowhethersmall,cash-flow-basedlendingcanhelpfacilitateaccesstolarger,collateral-basedloans.Thiscanbeparticularlyrelevantwhencollateralaloneisinsufficienttoaddressinformationfrictionsbetweenlendersandborrowers(
BesankoandThakor
,
1987
;
Benmelech
,
2024
).Thus,improvementsintraditionalcreditmetrics,suchasrepaymenthistory,debt-to-incomeratio,andcreditscoresresultingfromcash-flow-basedlending,couldfurtherenhanceborrowers’accesstocollateral-basedloans.
IempiricallyexaminetheeffectofunsecuredFinTechloanoriginations,measuredusingLendingClubdata,ontheoutcomesinthemortgagemarket,measuredusingHMDAdata,during2010to2019.Icombinethesetwodatasetsandaggregatethemat3-digitzipcodelevel,orzip3level,toanalyzehowthegrowthofunsecuredFinTechlendinginfluencesmortgagemarketoutcomesacrossover900zip3areasintheUS.Sinceborrowersoftenreceivepreliminaryindicationsfromlendersabouttheirlikelihoodofobtainingamortgagebeforetheyformallyapply,Iuseboththenumberofmortgageapplicationsandthenumberofloansoriginatedasmeasuresofmortgageactivityineacharea.Tocontrolforanytime-invariantlocalcharacteristics,Iemployzip3areafixedeffects.Additionally,Iincludetheinteractionofstateandyearfixedeffectstoaccountforanytime-varyingchangesinstate-levelfactors,suchaseconomicgrowth,fiscalpolicy,regulation,anddemographics.Furthermore,byregressingmortgageactivityonlaggedvaluesofLendingClubloanactivity,Iaddresspotentialconcernsaboutreversecausalitybetweenthetwomarkets.IfindapositivecorrelationbetweenLendingClubloanactivityandoverallmortgageactivityinanareainthisbaselinespecification.
Isthisrelationshipcausal?Unobservedtime-varyingfactors,suchaseconomicgrowthandjobopportunity,maysimultaneouslydrivebothFinTechlendingandmortgageactivitywithinanarea.Toaddressthisendogeneityconcern,IemployanovelidentificationstrategybasedontheFebruary2015partnershipbetweenLendingClubandtheBancAlliancenetwork,oneofthelargestconsortiumofcommunitybanksintheUS.Akeyaspectofthispartnership
wasthatBancAlliancememberbankswouldredirecttheirunsecuredpersonalloancustomerstotheLendingClubplatform,enablingLendingClubtosignificantlyexpanditsborrowerbaseinareaswherethesebanksoperated.SincethepartnershipwiththeBancAlliancenetworkwasestablishedatthenational-level,LendingClubcouldnotselectivelytargetspecificareastoexpanditsborrowerbase.ThismakestheincreaseinLendingClubloanactivityexogenoustomortgageoutcomesandgrowthatthezip3level.Furthermore,thisarrangementalsopreventedLendingClubfromsellingmortgageorotherproductstobankcustomers.
3
BancAlliancememberbanks,whowereprimarilysmallcommunitybanks,enteredthepartnershiptoinvestinsecuritizedLendingClubloansinordertodiversifytheircreditportfolioswithunsecuredconsumerloansratherthanexpandmortgagelending.Thisquasi-exogenousexpansionofLendingClubloanactivityprovidesauniqueopportunitytocausallyidentifytheimpactofunsecuredFinTechlendingonmortgagemarketoutcomesinanarea.
Atthetime,BancAlliancehadover200memberbanksacross39states,withmemberbanksbeingsmallcommunitybankswithassetsbetween$200millionand$10billion.Toappreciatethescaleofthisnetwork,itishelpfultonotethatifallitsmemberbanksformedasingleentity,theBancAlliancenetworkwouldrankfourthinthecountrybybranchcountandseventeenthbyassetsize.
4
AreaswhereBancAlliancememberbanksoperatedduringthe2015partnershipwithLendingClubaredesignatedastreatedareas,whileallotherareasintheU.S.serveascontrolareas.Iuseastandarddifference-in-differencesspecificationtocompareoutcomesinLendingClubandmortgageactivitybeforeandafter2015acrosstreatedandcontrolareas.IfindthatthenumberofLendingClubloansincreasedby9.25%intreatedareascomparedtocontrolareasafterthe2015BancAlliancepartnership,highlightingthesignificanteffectofthispartnershiponLendingClubloanactivity.Inmymaintestusingthesamedifference-in-differencesspecification,Ishowthatmortgageactivityintreatedareasincreasedbynearly3%relativetocontrolareasafter2015.Moreover,Ishowthatbefore
3
LendingClubAndSmallerBanksInUnlikelyPartnership,WallStreetJournal,June2015
4
LendingClub’sNewestDealFuelsInvestorExcitement,WallStreetJournal,February2015
2015,treatedandcontrolareasexhibitedparalleltrendsinbothmortgageapplicationsandloanoriginations.
TodirectlylinkLendingClubloanstomortgages,Iuseatwo-stageregressionspecificationusinginstrumenteddifference-in-differences(DDIV)approach(
Duflo
,
2001
;
Hudson,Hull,
andLiebersohn
,
2017
).Thefirststageisastandarddifference-in-differencesspecification,asdescribedearlier,whereIestimatetheimpactoftheBancAlliancepartnershiponLendingClubloanactivityinanarea.Inthesecondstage,IassessthesensitivityofmortgageactivitytounsecuredFinTechloanactivity,instrumentedbythe2015BancAlliancepartnershipfromthefirststage.Iobservetwokeyfindings.First,thereisastatisticallysignificantpositivespillovereffectfromLendingClubloanactivitytomortgageactivitywithinanarea.Onaverage,a1%increaseinLendingClubloansledtoa30-40basispointincreaseinmortgageapplicationsandloans.Second,thiseffectissmallestimmediatelyaftertheincreaseinLendingClubloansandgrowslargerovertime.Thispatternisconsistentwiththegradualimprovementinborrowers’traditionalcreditmetrics,drivenbyFinTechlenders’abilitytoidentifycreditworthyborrowersandalleviateinformationfrictionsevenbeyondtheunsecuredloanmarket.Additionally,usingthesamedifference-in-differencesspecification,Ifindthatmortgageinterestratesdeclinedby1.62%intreatedareascomparedtocontrolareasafter2015.Thisresult,combinedwiththeobservedincreaseinmortgagequantity,suggestsanoutwardshiftinthecreditsupplycurveinthemortgagemarketfollowingthequasi-exogenousincreaseinLendingClubloanactivity,asinstrumentedthroughits2015partnershipwiththeBancAlliancenetwork.
Whatisthemagnitudeofthisspillovereffect?IntheDDIVspecification,IfindthataonepercentincreaseinLendingClubloansresultsinapproximatelya30-40basispointincreaseinmortgageactivityinanarea.GiventhattheaveragenumberofLendingClubloansis335,andtheaveragenumberofmortgageloansis10,570inanareainmysample,theDDIVspecificationsuggeststhatthreeadditionalLendingClubloansleadtoabout32extramortgageloans.ThisindicatesamultipliereffectinthespilloverfromLendingClub
loanactivitytomortgageactivity.
Therearefourpossibleexplanationsforthismultipliereffect.First,borrowersvettedandapprovedbytheLendingClubplatformmayusetheloantermstheyreceiveasleveragetoobtainanunsecuredloanfromabank.
5
Second,banksmayinterpretaFinTechplatform’sdecisiontoofferaloanasapositivesignal,promptingthemtoextendanunsecuredloantotheseborrowers(
Balyuk
,
2023
).Third,onceaLendingClubborrowersecuresamortgage,theymaydecidetorefinanceit—sometimesmorethanonce—resultinginmultipleloansforthesameborrowerinthemortgagemarketdata.Finally,theIVestimateshererepresenttheeffectofthetreatmentonthesubsetofareasthatareaffectedbytheinstrument,i.e.thecompliers.ThisgroupmayrespondmorestronglytothetreatmentthantheaverageareacapturedbythebaselineOLSspecification,makingtheIVestimatelarger.Consequently,thelargevalueofelasticityhereisinlinewiththeinterpretationthatbecausethecomplierareashaveahighersensitivitytotreatment(
Jiang
,
2017
).
Whatistheeconomicmechanismbehindmyfindings?FinTechlenderscanusealternativedataandtheirsuperiorprocessingtechnologytoidentifycreditworthyborrowersintheunsecuredloanmarket,andconsequentlyarmthemwithcheaperdebtconsolidationloansthathelpthemimprovetheirtraditionalcreditmetrics,whichiscrucialtofacilitatethespillovereffectfromunsecuredloanmarkettosecuredmortgagemarket.Icheckthismechanismusingtwotests.Inthesetests,Iexaminethevaryinglevelsofinformationasymmetryacrossbothborrowertypesandmortgageproductsinthemortgagemarket.First,differentmortgageproductsalsopresentvaryingdegreesofinformationbarriers.Forexample,newhomepurchasestypicallyinvolvegreaterinformationasymmetryforborrowerstoovercome,whereasrefinancingsgenerallycarrylowerinformationfrictionsduetotheborrower’sabilitytosecureamortgageinthepast.Second,someborrowers,suchasmiddle-incomeindividuals,aremorelikelytofacehigherinformationfrictionscomparedtootherborrowers.
5ObtainingloantermsfromLendingClubwouldnotonlyimprovetheinformativenessofborrowersbut
alsoreducetheirsearchcosts.Thiswouldfurtheraidborrowerstogetfavourableunsecuredloancontractsfromtraditionallenders(
Argyle,Nadauld,andPalmer
,
2023
).
Inthefirsttest,Iconsiderthevaryinglevelsofinformationasymmetryinthemortgagemarketbasedonthetypeofmortgageproduct.Fornewhomepurchases,theinformationgapbetweenlendersandborrowersshouldbelargercomparedtorefinancings,whereborrowersarealreadyrepayinganexistingmortgage.Therefore,IcomparethesensitivityofnewhomepurchaseversusrefinancingstoLendingClubloanactivityinanarea.IfindthatnewhomepurchasesaremoresensitivetoLendingClubloanactivitythanrefinancingactivity.Usingatripledifferencesregressionspecificationtocomparetreatedversuscontrolareasbeforeandafterthe2015BancAlliancepartnership,Ishowthat,whencomparedtorefinancings,newhomepurchaseapplicationsincreasedby3.5%andloanoriginationsincreasedby4.6%intreatedareaspost2015,versuscontrolareas.
Thesecondtestexaminestheimpactofalleviatinginformationasymmetryacrossdifferentincomebandsinthemortgagemarket.Ifindthat,conditionalonborrowersapplyingforamortgage,middle-incomeborrowersarethemostsensitivetoincreasesinLendingClubloanactivityinanarea.Thisresultalignswiththeinformationfrictionsmechanism.Thisisbecauseifthespillovereffectweresolelydrivenbyaccesstocheaperdebtconsolidationloans,low-incomeborrowerswouldbeexpectedtoshowthegreatestsensitivity.However,thehigherrelativesensitivityamongmiddle-incomeborrowerssuggeststhatFinTechlenderseffectivelyidentifycreditworthyindividuals,whostandtolosethemostifdeniedaccesstounsecuredFinTechloans.
ArethenewmortgagesfacilitatedbyLendingClubloanactivityriskierthanaverage?Toassessthis,IstudytheperformanceofmortgagesoriginatedasaresultofincreasedunsecuredLendingClubloans,usingFannieMaeandFreddieMacdata.EmployingaDDIVregressiondesign,withthe2015LendingClubpartnershipwithBancAllianceastheinstrument,IprovidecausalevidencethattheriseinmortgageloansduetoincreasedLendingClubactivitydoesnotleadtohighermortgagedelinquencies.ThisfindingsuggeststhatthespilloverfromunsecuredFinTechlendingtothemortgagemarketisdrivenbyFinTechlenders’abilitytousealternativedataandsuperiorscreeningtechnologytoidentifypreviouslyexcludedbut
creditworthyborrowers.
Tosupportmymainfindings,Iconducttworobustnesstests.First,IreplicatemymainfindingsusingHMDAmortgagedata,excludingallmortgageactivitygeneratedbyFinTechlendersinthemortgagemarket.ThistestshowssimilarresultstomymainfindingsandhelpseliminatethepossibilitythattheimpactofunsecuredFinTechloanactivityonmortgageactivityisdrivenbyFinTechlendersinthemortgagemarket.Second,IreplicatemymainresultsusingFannieMaeandFreddieMacmortgagedata.Theresultsaresimilartomymainfindings,furthersubstantiatingtheuseofFannieMaeandFreddieMacdatatostudymortgageperformance.
Myfindingscarryimportantimplicationsforborrowersinthemortgagemarket.DespitenumerouspolicyinitiativesandregulatoryeffortsintheU.S.overthepastfewdecadestoincreaseaccesstothemortgagemarket,significantfrictionsexistincreditmarketsformarginalborrowers.Mystudyshowsthattechnologyenabledmarket-basedmechanismscanbeapromisingtooltoalleviatethesefrictions.AlthoughmystudydoesnotdirectlyassessthewelfareeffectsofFinTechlending,ithighlightsasignificantbenefit:FinTechlendingcanimprovemortgageaccess.Thisfindingiscrucialforcomprehensivewelfareevaluations,asrecentconcernsfromregulatorsandpolicyadvocateshaveraisedquestionsabouttheuseofalternativedatabyunsecuredFinTechlendersanditspotentialimpactonfairlendingpractices(
DiMaggioetal.
,
2022
),aswellasonprivacy.MystudyprovidesanessentialinputtothisbroaderwelfareanalysisbydocumentingoneofFinTechlending’spositiveeffectsoncreditmarketaccess.
RelatedLiterature
ThispaperisamongthefirsttoprovidecausalevidenceofthespillovereffectsofunsecuredFinTechlendingonsecuredmortgageloans.Threerelatedpapersherearestudiesby
Chava,
Ganduri,Paradkar,andZhang
(
2021
),
Balyuk
(
2023
),and
DoreandMach
(
2022
),eachof
whichcontributestotheunderstandingofthebroadroleofunsecuredFinTechlendingonborrowers,butwithdifferentfocusesandfindings.First,
Chavaetal.
(
2021
)comparethecreditscoresanddefaultratesofborrowersofananonymousFinTechmarketplacelender(MPL)withbankborrowers,aswellaswithborrowerswhoweredeniedunsecuredpersonalcreditbyboththeMPLandbanks.TheyfindthatMPLborrowersinitiallyexperienceariseandeventuallyexperiencedeclinesincreditscores.Moreover,theyexperiencehigherdefaultratesintheunsecuredpersonalloanmarket.
Second,
Balyuk
(
2023
)usesloan-leveldatafromProspertodemonstratethatProsperborrowingincreasesaccesstorevolvingbankcreditbyalleviatinginformationfrictions.Whileherfindingsalignwithmyresultsregardingtheshort-termimprovementofcreditprofilesduetoProsperborrowing,herfocusisonthespilloverwithintheunsecuredloanmarket.Incontrast,thispaperprovidescausalevidenceofspilloverfromtheunsecuredFinTechlendingmarkettothesecuredmortgagemarket,highlightingabroaderandmoreimpactfulrelationship.Third,
DoreandMach
(
2022
)alsoshowincreasedsecuredlendingbyProsperborrowers,afindingclosetomyresults.However,theseresultsarenotcausal.MystudybuildsontheseresultsbyprovidingcausalevidenceofthespillovereffectfromunsecuredFinTechlendingtosecuredmortgagelending.
MystudycontributestotheliteratureoncreditmarketfrictionsbyshowinghowFinTechlendinginthesmall-ticketloanmarketcanalleviateinformationfrictionsthatborrowersfaceinlarger,collateral-basedloanmarkets.Whilesomestudiesemphasizetheroleofcash-flow-basedlendinginaddressingcreditfrictions(
HolmstromandTirole
,
1997
),othersdemonstratehowcollateralcanreduceborrowingcostsandincreasecreditlimits(
Bernanke,
Gertler,andGilchrist
,
1996
;
KiyotakiandMoore
,
1997
).Recentresearchhighlightsthegrowingsignificanceofcash-flow-basedlending,with
LianandMa
(
2021
)documentingthatnearly80%ofU.S.corporateloansarecash-flow-based,and
Benmelech,Kumar,andRajan
(
2020
)observingadeclineinsecuredlending.Thus,myfindingthatcash-flow-basedlendingcancomplementcollateral-basedlendingisparticularlyrelevantintoday’slendinglandscape.
ThispaperisalsorelatedtothevastandgrowingliteraturethatdiscussestheimpactofFinTechlenders.MostofthisliteraturefocusesontheimpactofFinTechlendingwithinagivencreditmarket.IcontributetothisliteraturebyprovidingcausalevidenceofimpactofunsecuredFinTechloanmarkettocreditmarketoutcomesinothersecuredcreditmar-kets.
AgarwalandZhang
(
2020
),
Berg,Fuster,andPuri
(
2022
),
Allen,Gu,andJagtiani
(
2021
),
BranzoliandSupino
(
2020
),and
Morse
(
2015
)provideexcellentoverviewoffrictionsaddressedbyFinTechlenders.Specifically,useofalternativedataforscreening,superiorscreeningalgorithms,improvedcustomerexperienceintermsofcompletelyonlineapplica-tionprocessandfasterprocessingtimes,andinnovativeproductsforeffectiveenforcementmechanisms,suchasrevenue-basedfinancing,havehelpedFinTechlendersgainanedgeovertraditionallendersinunsecuredpersonalcreditlending(
JagtianiandLemieux
,
2019
;
Avramidis,Mylonopoulos,andPennacchi
,
2022
;
DiMaggioetal.
,
2022
;
RajanandXiong
,
2024
;
ValleeandZeng
,
2019
),smallbusinesslending(
GopalandSchnabl
,
2022
;
Ereland
Liebersohn
,
2020
;
Beaumont,Tang,andVansteenberghe
,
2021
)andthemortgagemarket(
Fuster,Plosser,Schnabl,andVickery
,
2019
;
Buchak,Matvos,Piskorski,andSeru
,
2018
;
Fuster,Goldsmith-Pinkham,Ramadorai,andWalther
,
2022
).
Thispaperisalsorelatedtothebroadliteraturethatrecordstheroleofinnovationinfinancialintermediationtoreduceinformationfrictionsincreditmarkets.Theimpactofdigitalpaymentsisattheforefrontofthisliteratureastheyhelpincreasetheeconomicoutcomesofborrowers(
DubeyandPurnanandam
,
2023
;
JackandSuri
,
2014
)byalleviatinginformationasymmetryforhouseholdsandfirms,resultinginrelaxationofcreditconstraints(
Parlour,Rajan,andZhu
,
2022
;
Ghosh,Vallee,andZeng
,
2022
;
Bj¨orkegrenandGrissen
,
2018
).
Therestofthepaperisorganizedasfollows.Section
1
discussesdataconstructionanddescriptivestatistics.Section
2
explainstheresultsfromthebaselineordinaryleastsquares(OLS)specification.Section
3
explainstheidentificationstrategy,anddiscussesresultsusingthestandarddifference-in-differencesandtheinstrumenteddifference-in-differences
specifications.Section
4
presentspotentialeconomicmechanism,andpresentsresultsthatsupportthismechanism.Section
5
discussesimpactonmortgageloanperformanceduetounsecuredFinTechlending.Section
6
discussesrobustnessteststosupportmymainresultsandmechanism.Section
7
concludesthepaper.
DataandDescriptiveStatistics
IconstructthemainsampletostudythespillovereffectsfromunsecuredFinTechloanactivityonmortgageactivityusingloan-leveldatabyLendingClubandapplication-leveldatafromHMDA.Iaggregatethisdataat3-digitzipcodelevel,orzip3level,whereeachzip3isanareadefinedbyallzipcodessharingthesamefirstthreedigits.Consequently,azip3areaservesasboththeunitofobservationandtheleveloftreatmentintheempiricalsettingofthispaper.Thesamplehereconsistsof905zip3areasacross50USstatesandtheDistrictofColumbia.Eachzip3areahasapopulationofapproximately336,751,consistentwiththetypicalpopulationofazip3areaintheU.S.
LendingClubData:Figure
1
depictsthegeographicvariationofLendingClub’sloanactivityinanareaasaproportionofthetotalloanamountoriginatedbyLendingClubacrosstheU.S.inagivenyearduringthesampleperiod.From2010to2019,thisdatasetcoversabout3millionloans.Foreachoftheseloans,Iobserveloantermssuchasloanamount,interestrate,termperiod,purposeetc,reportedincomeoftheborrower,informationaboutcreditprofileoftheborrowersuchastheirdebt-to-incomeratio,creditscoreetc,andemploymentdetailsoftheborrower.Onaverage,LendingCluboriginated335loansinanareainayear.
AsshowninTable
1
,atypicalpersonalloanfromLendingClubhasanaverageloanamountof$14,047,aninterestrateof12.7%,andatermofeither3or5years.Seventypercentoftheloansinmysamplewereissuedfora3-yearterm,whiletheremaining30%
Figure1:VariationInLendingClubLoanActivity
Figure
1
presentstheheatmapshowingtheaverageshareofLendingClub’sunsecuredpersonalloanamountsineachzip3areaasapercentageofthetotalLendingClubloanamountacrosstheU.S.inagivenyear.Thevaluesrepresenttheaverageofthesepercentagesoverthesampleperiodfrom2010to2019.
(0.1356,1.2043]
(0.0513,0.1356]
(0.0223,0.0513]
[0.0000,0.0223]
hada5-yearterm.TheaverageLendingClubborrowerhasanannualincomeof$69,199.Intermsofcreditprofile,thetypicalborrowerhasaFICOscoreof696andadebt-to-incomeratioof18.2%.Additionally,80%oftheLendingClubloansinmysampleweretakenoutforthepurposeofdebtconsolidation,specificallytorefinanceexistinghigh-interestcreditcarddebtandotherunsecuredloansatalowercost.
HMDAMortgageData:Tostudymortgageactivityinanarea,IprimarilyusedatareportedbyU.S.mortgagelendersundertheHomeMortgageDisclosureAct(HMDA).Thisapplication-leveldata,providedannuallybytheFederalFinancialInstitutionsExaminationCouncil(FFIEC),representsthenearuniverseofmortgageapplicationsintheU.S.From2010to2019,Iobserveapproximately155millionmortgageapplications.Foreachapplication,Ihaveinformationontheloancharacteristics,suchastheloanamount,type,andpurpose,aswellasthegeographiclocationandsomeborrowercharacteristics,suchastheirreported
income.Notably,theaverageincomeofamortgageborrowerinanareais$90,480,whichishigherthantheaverageincomeofaLendingClubborrower,at$69,199.
Table
2
showsthat,onaverage,azip3areaintheU.S.saw17,095mortgageapplicationsperyearduringthisperiod.Of
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年自配合組合電器項(xiàng)目安全調(diào)研評(píng)估報(bào)告
- 包辦合同婚姻協(xié)議書(shū)范本
- 安全文化課件選擇
- 陜西銅材項(xiàng)目可行性報(bào)告-圖文
- 存單質(zhì)押合同協(xié)議書(shū)
- 安全教育騎車安全課件
- 創(chuàng)新創(chuàng)業(yè)計(jì)劃書(shū)大作業(yè)
- 2025年智能配電設(shè)備市場(chǎng)現(xiàn)狀調(diào)研及前景趨勢(shì)預(yù)測(cè)報(bào)告
- 門樓制作合同協(xié)議書(shū)范本
- 機(jī)器挖地安全合同協(xié)議書(shū)
- 云南省勞動(dòng)合同范本下載
- 醫(yī)院培訓(xùn)課件:《分級(jí)護(hù)理制度》
- 外國(guó)建筑賞析智慧樹(shù)知到期末考試答案章節(jié)答案2024年清華大學(xué)
- 抑郁障礙課件
- 2024屆湖南省瀏陽(yáng)市中考聯(lián)考化學(xué)試卷含解析
- 北京奧林匹克森林公園植物景觀與生態(tài)效益初探
- 交流與傳承-東西文化中碰撞中的藝術(shù)嬗變
- 四年級(jí)美術(shù) 《熱鬧的集市》課件“十市聯(lián)賽”一等獎(jiǎng)
- 工業(yè)數(shù)據(jù)采集技術(shù)及應(yīng)用 - 規(guī)劃生產(chǎn)數(shù)據(jù)采集方案
- 消除艾滋病、梅毒和乙肝母嬰傳播信息管理方案
- 維修類技能培訓(xùn)課件
評(píng)論
0/150
提交評(píng)論