




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號學(xué)校________________班級____________姓名____________考場____________準(zhǔn)考證號…………密…………封…………線…………內(nèi)…………不…………要…………答…………題…………第1頁,共3頁沈陽理工大學(xué)
《人工智能及應(yīng)用》2023-2024學(xué)年第二學(xué)期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共30個(gè)小題,每小題1分,共30分.在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的.)1、深度學(xué)習(xí)在近年來取得了顯著的成果,特別是在圖像識別和語音識別等領(lǐng)域。以下關(guān)于深度學(xué)習(xí)的敘述,不準(zhǔn)確的是()A.深度學(xué)習(xí)是一種基于多層神經(jīng)網(wǎng)絡(luò)的機(jī)器學(xué)習(xí)方法,能夠自動從數(shù)據(jù)中學(xué)習(xí)特征B.深度學(xué)習(xí)模型需要大量的訓(xùn)練數(shù)據(jù)和強(qiáng)大的計(jì)算資源來進(jìn)行訓(xùn)練C.深度學(xué)習(xí)可以解決傳統(tǒng)機(jī)器學(xué)習(xí)方法難以處理的復(fù)雜問題,如語義理解和情感分析D.深度學(xué)習(xí)模型的結(jié)構(gòu)和參數(shù)一旦確定,就無法根據(jù)新的數(shù)據(jù)進(jìn)行調(diào)整和優(yōu)化2、人工智能在智能交通系統(tǒng)中的應(yīng)用可以改善交通流量和安全性。假設(shè)要開發(fā)一個(gè)能夠?qū)崟r(shí)優(yōu)化交通信號燈的系統(tǒng),以下關(guān)于考慮交通狀況多樣性的方法,哪一項(xiàng)是最關(guān)鍵的?()A.只考慮當(dāng)前道路的車流量,不考慮周邊道路的情況B.綜合考慮不同時(shí)間段、天氣條件和特殊事件等對交通的影響C.按照固定的模式設(shè)置交通信號燈,不進(jìn)行實(shí)時(shí)調(diào)整D.忽略行人的需求,只關(guān)注車輛的通行3、人工智能在農(nóng)業(yè)領(lǐng)域的應(yīng)用具有很大的潛力。以下關(guān)于人工智能在農(nóng)業(yè)應(yīng)用的描述,不正確的是()A.可以通過圖像識別技術(shù)監(jiān)測農(nóng)作物的生長狀況和病蟲害B.能夠根據(jù)氣象數(shù)據(jù)和土壤條件進(jìn)行精準(zhǔn)的灌溉和施肥決策C.人工智能在農(nóng)業(yè)中的應(yīng)用受限于農(nóng)村地區(qū)的基礎(chǔ)設(shè)施和技術(shù)水平,發(fā)展緩慢D.借助智能傳感器和物聯(lián)網(wǎng)技術(shù),實(shí)現(xiàn)農(nóng)業(yè)生產(chǎn)的智能化管理4、人工智能中的生成對抗網(wǎng)絡(luò)(GAN)在圖像生成、數(shù)據(jù)增強(qiáng)等方面表現(xiàn)出色。假設(shè)我們想要生成逼真的人臉圖像,使用GAN來實(shí)現(xiàn)。那么,以下關(guān)于GAN的描述,哪一項(xiàng)是錯(cuò)誤的?()A.由生成器和判別器兩個(gè)部分組成,它們通過相互對抗來學(xué)習(xí)B.生成器的目標(biāo)是生成盡可能逼真的假樣本,以欺騙判別器C.判別器的能力越強(qiáng),生成器就越難學(xué)習(xí)到有效的特征D.GAN的訓(xùn)練過程是穩(wěn)定的,不會出現(xiàn)模式崩潰等問題5、人工智能中的模型評估指標(biāo)對于衡量模型性能至關(guān)重要。假設(shè)要評估一個(gè)圖像分類模型的性能,以下關(guān)于評估指標(biāo)的描述,正確的是:()A.準(zhǔn)確率是唯一可靠的評估指標(biāo),能夠全面反映模型的性能B.召回率和精確率相互獨(dú)立,沒有關(guān)聯(lián)C.F1值綜合考慮了召回率和精確率,能夠更全面地評估模型D.混淆矩陣只適用于二分類問題,對于多分類問題沒有作用6、人工智能在自動駕駛領(lǐng)域有著廣闊的應(yīng)用前景。假設(shè)一輛自動駕駛汽車在行駛過程中需要做出決策,以下關(guān)于人工智能在自動駕駛中的描述,哪一項(xiàng)是不正確的?()A.傳感器數(shù)據(jù)的融合和處理是自動駕駛系統(tǒng)做出準(zhǔn)確決策的基礎(chǔ)B.深度學(xué)習(xí)算法可以識別道路標(biāo)志、行人和其他車輛,輔助駕駛決策C.自動駕駛系統(tǒng)能夠在所有復(fù)雜的路況下做出完美無誤的決策,無需人類干預(yù)D.為了確保安全,自動駕駛系統(tǒng)需要具備應(yīng)對突發(fā)情況的能力和冗余機(jī)制7、在人工智能的農(nóng)業(yè)應(yīng)用中,精準(zhǔn)農(nóng)業(yè)可以通過傳感器和數(shù)據(jù)分析實(shí)現(xiàn)對農(nóng)作物的精細(xì)化管理。假設(shè)要根據(jù)土壤濕度和氣象數(shù)據(jù)決定灌溉量,以下哪個(gè)技術(shù)環(huán)節(jié)是最關(guān)鍵的?()A.數(shù)據(jù)的采集和傳輸B.數(shù)據(jù)分析和建模C.灌溉設(shè)備的控制D.傳感器的校準(zhǔn)8、在人工智能的智能推薦系統(tǒng)中,假設(shè)要為用戶提供個(gè)性化的推薦服務(wù),以下關(guān)于推薦算法的描述,正確的是:()A.協(xié)同過濾算法只考慮用戶的歷史行為,不考慮物品的特征B.基于內(nèi)容的推薦算法能夠根據(jù)物品的屬性為用戶推薦相似的物品C.混合推薦算法結(jié)合了多種推薦方法的優(yōu)點(diǎn),能夠提供更準(zhǔn)確的推薦D.以上推薦算法都存在一定的局限性,無法滿足所有用戶的需求9、人工智能中的知識圖譜用于表示實(shí)體之間的關(guān)系和知識。假設(shè)一個(gè)知識圖譜被用于智能問答系統(tǒng),以下關(guān)于知識圖譜的描述,正確的是:()A.知識圖譜中的知識是固定不變的,不能進(jìn)行更新和擴(kuò)展B.知識圖譜能夠自動從大量文本中抽取知識,無需人工干預(yù)C.可以通過知識圖譜的推理功能發(fā)現(xiàn)隱藏的知識和關(guān)系D.知識圖譜只適用于特定領(lǐng)域的知識表示,通用性較差10、強(qiáng)化學(xué)習(xí)是人工智能中的一個(gè)重要領(lǐng)域,常用于訓(xùn)練智能體在環(huán)境中做出最優(yōu)決策。假設(shè)一個(gè)機(jī)器人需要在一個(gè)充滿障礙物的房間里找到通往目標(biāo)位置的路徑,同時(shí)避免碰撞。在這種情況下,以下關(guān)于強(qiáng)化學(xué)習(xí)的說法,哪一項(xiàng)是正確的?()A.智能體通過隨機(jī)嘗試不同的動作來學(xué)習(xí)最優(yōu)策略B.獎(jiǎng)勵(lì)函數(shù)的設(shè)計(jì)對學(xué)習(xí)效果沒有太大影響C.強(qiáng)化學(xué)習(xí)不需要考慮環(huán)境的動態(tài)變化D.一旦訓(xùn)練完成,智能體在新的環(huán)境中無需重新學(xué)習(xí)就能表現(xiàn)良好11、情感分析是自然語言處理中的一個(gè)重要任務(wù)。以下關(guān)于情感分析的描述,不準(zhǔn)確的是()A.情感分析旨在判斷文本所表達(dá)的情感傾向,如積極、消極或中性B.可以基于詞典、機(jī)器學(xué)習(xí)算法或深度學(xué)習(xí)模型來進(jìn)行情感分析C.情感分析在社交媒體監(jiān)測、客戶反饋分析等方面有廣泛的應(yīng)用D.情感分析的結(jié)果總是準(zhǔn)確無誤的,不受文本的復(fù)雜性和多義性影響12、假設(shè)要開發(fā)一個(gè)能夠在復(fù)雜環(huán)境中自主導(dǎo)航的智能機(jī)器人,例如在倉庫中搬運(yùn)貨物,以下哪個(gè)模塊對于機(jī)器人的決策和行動至關(guān)重要?()A.環(huán)境感知模塊B.路徑規(guī)劃模塊C.運(yùn)動控制模塊D.以上都是13、人工智能中的強(qiáng)化學(xué)習(xí)算法可以用于訓(xùn)練機(jī)器人完成復(fù)雜的任務(wù)。假設(shè)一個(gè)機(jī)器人需要通過強(qiáng)化學(xué)習(xí)學(xué)會在不同地形上行走。以下關(guān)于強(qiáng)化學(xué)習(xí)訓(xùn)練機(jī)器人的描述,哪一項(xiàng)是不正確的?()A.機(jī)器人通過與環(huán)境的交互獲得獎(jiǎng)勵(lì)或懲罰,從而調(diào)整自己的動作策略B.可以使用模擬環(huán)境進(jìn)行大量的訓(xùn)練,以減少在真實(shí)環(huán)境中的試驗(yàn)成本和風(fēng)險(xiǎn)C.強(qiáng)化學(xué)習(xí)訓(xùn)練出的機(jī)器人策略在不同的環(huán)境條件下都能保持最優(yōu)性能,無需進(jìn)一步調(diào)整D.合理設(shè)計(jì)獎(jiǎng)勵(lì)函數(shù)對于引導(dǎo)機(jī)器人學(xué)習(xí)到期望的行為至關(guān)重要14、在人工智能的文本分類任務(wù)中,例如將新聞文章分類為政治、經(jīng)濟(jì)、體育等類別。假設(shè)數(shù)據(jù)集存在類別不平衡的問題,某些類別的樣本數(shù)量遠(yuǎn)遠(yuǎn)多于其他類別。為了提高分類模型在這種情況下的性能,以下哪種方法是有效的?()A.對少數(shù)類進(jìn)行過采樣,增加其數(shù)量B.對多數(shù)類進(jìn)行欠采樣,減少其數(shù)量C.使用不平衡數(shù)據(jù)直接訓(xùn)練模型,不做處理D.只關(guān)注樣本數(shù)量多的類別,忽略少數(shù)類別15、在人工智能的研究中,可解釋性是一個(gè)重要的問題。假設(shè)一個(gè)醫(yī)療決策支持系統(tǒng)基于人工智能模型給出診斷建議。以下關(guān)于模型可解釋性的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.可解釋性有助于醫(yī)生和患者理解模型的決策依據(jù),增加信任度B.一些復(fù)雜的深度學(xué)習(xí)模型由于其內(nèi)部運(yùn)作的復(fù)雜性,往往具有較低的可解釋性C.為了提高模型的性能,可以犧牲一定的可解釋性D.可解釋性對于所有類型的人工智能應(yīng)用都是同等重要的,沒有優(yōu)先級之分16、強(qiáng)化學(xué)習(xí)是人工智能的一個(gè)重要分支,常用于訓(xùn)練智能體做出最優(yōu)決策。假設(shè)一個(gè)智能體在一個(gè)復(fù)雜的環(huán)境中學(xué)習(xí),以下關(guān)于強(qiáng)化學(xué)習(xí)的描述,正確的是:()A.智能體通過隨機(jī)嘗試不同的動作來學(xué)習(xí),不需要任何獎(jiǎng)勵(lì)反饋B.獎(jiǎng)勵(lì)函數(shù)的設(shè)計(jì)對智能體的學(xué)習(xí)效果沒有影響,只要有足夠的訓(xùn)練時(shí)間就能學(xué)會最優(yōu)策略C.強(qiáng)化學(xué)習(xí)算法能夠保證智能體在有限的時(shí)間內(nèi)找到絕對最優(yōu)的決策策略D.智能體在學(xué)習(xí)過程中會不斷調(diào)整策略以最大化累積獎(jiǎng)勵(lì)17、人工智能中的聚類算法用于將數(shù)據(jù)分組為不同的簇。假設(shè)要對一組客戶數(shù)據(jù)進(jìn)行聚類分析。以下關(guān)于聚類算法的描述,哪一項(xiàng)是不準(zhǔn)確的?()A.K-Means算法是一種常見的聚類算法,需要事先指定簇的數(shù)量B.聚類算法可以發(fā)現(xiàn)數(shù)據(jù)中的潛在模式和結(jié)構(gòu),幫助進(jìn)行市場細(xì)分等應(yīng)用C.不同的聚類算法在不同的數(shù)據(jù)分布和場景下表現(xiàn)各異,需要根據(jù)實(shí)際情況選擇D.聚類結(jié)果是唯一確定的,不受算法參數(shù)和初始值的影響18、在人工智能的語音合成領(lǐng)域,假設(shè)要生成自然流暢、富有情感的語音,以下關(guān)于語音合成技術(shù)的描述,正確的是:()A.參數(shù)合成方法能夠靈活控制語音的特征,但音質(zhì)相對較差B.拼接合成方法生成的語音自然度高,但需要大量的語音庫支持C.深度學(xué)習(xí)的語音合成模型可以同時(shí)實(shí)現(xiàn)高質(zhì)量和高自然度的語音生成D.語音合成的情感表達(dá)只能通過調(diào)整語音的音調(diào)來實(shí)現(xiàn)19、人工智能在金融風(fēng)險(xiǎn)管理中的應(yīng)用逐漸增多。假設(shè)要利用人工智能模型預(yù)測市場風(fēng)險(xiǎn),以下關(guān)于模型評估指標(biāo)的選擇,哪一項(xiàng)是最重要的?()A.準(zhǔn)確率,即模型正確預(yù)測的比例B.召回率,即模型正確識別出風(fēng)險(xiǎn)的比例C.F1值,綜合考慮準(zhǔn)確率和召回率D.均方誤差,衡量模型預(yù)測值與實(shí)際值之間的差異20、人工智能在金融領(lǐng)域的風(fēng)險(xiǎn)評估和欺詐檢測中發(fā)揮著重要作用。假設(shè)要構(gòu)建一個(gè)系統(tǒng)來檢測信用卡交易中的欺詐行為,需要實(shí)時(shí)分析交易數(shù)據(jù)和用戶行為模式。以下哪種技術(shù)或方法在處理這種實(shí)時(shí)、動態(tài)的數(shù)據(jù)時(shí)最為有效?()A.實(shí)時(shí)數(shù)據(jù)分析和監(jiān)控B.離線批量處理和分析C.基于經(jīng)驗(yàn)的規(guī)則判斷D.隨機(jī)抽樣檢查21、人工智能中的無人駕駛技術(shù)面臨著眾多技術(shù)和法律挑戰(zhàn)。假設(shè)我們在討論無人駕駛汽車的責(zé)任歸屬問題,以下關(guān)于無人駕駛責(zé)任的說法,哪一項(xiàng)是不正確的?()A.事故責(zé)任的判定應(yīng)該綜合考慮多種因素B.完全由無人駕駛汽車的制造商承擔(dān)責(zé)任C.法律法規(guī)需要隨著技術(shù)發(fā)展不斷完善D.乘客在某些情況下也可能承擔(dān)一定責(zé)任22、人工智能中的優(yōu)化算法用于訓(xùn)練模型和尋找最優(yōu)解。假設(shè)要訓(xùn)練一個(gè)復(fù)雜的神經(jīng)網(wǎng)絡(luò)模型,以下哪種優(yōu)化算法可能最為有效?()A.隨機(jī)梯度下降(SGD)算法,簡單直接,適用于各種模型B.自適應(yīng)矩估計(jì)(Adam)算法,能夠自動調(diào)整學(xué)習(xí)率,收斂速度快C.牛頓法,計(jì)算精度高,但計(jì)算復(fù)雜度大,不適合大規(guī)模數(shù)據(jù)D.以上算法的效果取決于具體的問題和模型結(jié)構(gòu),需要進(jìn)行實(shí)驗(yàn)和比較23、在人工智能的發(fā)展中,機(jī)器學(xué)習(xí)是一個(gè)重要的分支。假設(shè)一個(gè)醫(yī)療團(tuán)隊(duì)想要利用機(jī)器學(xué)習(xí)來預(yù)測某種疾病的發(fā)病風(fēng)險(xiǎn),他們收集了大量患者的基因數(shù)據(jù)、生活習(xí)慣、病史等多維度信息。在選擇機(jī)器學(xué)習(xí)算法時(shí),需要考慮數(shù)據(jù)的特點(diǎn)、模型的復(fù)雜度和預(yù)測的準(zhǔn)確性等因素。以下哪種機(jī)器學(xué)習(xí)算法可能最適合這個(gè)任務(wù)?()A.決策樹算法,通過對特征的逐步劃分進(jìn)行預(yù)測B.線性回歸算法,建立變量之間的線性關(guān)系進(jìn)行預(yù)測C.支持向量機(jī)算法,尋找最優(yōu)分類超平面進(jìn)行分類預(yù)測D.樸素貝葉斯算法,基于概率計(jì)算進(jìn)行分類24、在人工智能的優(yōu)化算法中,隨機(jī)梯度下降(SGD)是常用的方法之一。假設(shè)在訓(xùn)練一個(gè)深度學(xué)習(xí)模型時(shí),發(fā)現(xiàn)模型收斂速度較慢。以下哪種改進(jìn)的SGD變種或優(yōu)化策略能夠加快模型的收斂速度,同時(shí)避免陷入局部最優(yōu)解?()A.AdagradB.AdadeltaC.RMSPropD.以上策略結(jié)合使用25、在人工智能的算法中,遺傳算法是一種基于自然選擇和遺傳機(jī)制的優(yōu)化算法??紤]一個(gè)優(yōu)化問題,需要在一個(gè)復(fù)雜的搜索空間中找到最優(yōu)解。以下關(guān)于遺傳算法的描述,哪一項(xiàng)是不正確的?()A.遺傳算法通過模擬生物進(jìn)化過程來尋找最優(yōu)解B.遺傳算法容易陷入局部最優(yōu)解C.遺傳算法對于大規(guī)模的優(yōu)化問題具有較好的性能D.遺傳算法的搜索過程是隨機(jī)的,沒有任何規(guī)律可循26、人工智能在醫(yī)療領(lǐng)域有廣泛的應(yīng)用前景。假設(shè)要開發(fā)一個(gè)能夠輔助醫(yī)生診斷疾病的系統(tǒng),需要對大量的醫(yī)療數(shù)據(jù)進(jìn)行分析。以下哪種技術(shù)可能有助于提高診斷的準(zhǔn)確性?()A.數(shù)據(jù)挖掘B.虛擬現(xiàn)實(shí)C.增強(qiáng)現(xiàn)實(shí)D.3D打印27、人工智能中的遷移學(xué)習(xí)是一種有效的技術(shù)。假設(shè)要將一個(gè)在大規(guī)模數(shù)據(jù)集上訓(xùn)練好的圖像分類模型應(yīng)用到一個(gè)特定的小數(shù)據(jù)集上,以下關(guān)于遷移學(xué)習(xí)的描述,正確的是:()A.可以直接將原模型在新數(shù)據(jù)集上進(jìn)行微調(diào),快速獲得較好的性能B.由于數(shù)據(jù)集差異較大,原模型無法在新數(shù)據(jù)集上使用,需要重新訓(xùn)練C.遷移學(xué)習(xí)只能在相同領(lǐng)域的任務(wù)之間進(jìn)行,不同領(lǐng)域無法應(yīng)用D.遷移學(xué)習(xí)會導(dǎo)致模型過擬合新數(shù)據(jù)集,降低泛化能力28、人工智能在金融欺詐檢測中的應(yīng)用能夠提高防范能力。假設(shè)一個(gè)金融機(jī)構(gòu)要利用人工智能檢測欺詐行為,以下關(guān)于其應(yīng)用的描述,哪一項(xiàng)是不正確的?()A.分析交易數(shù)據(jù)中的異常模式和行為特征,識別潛在的欺詐B.實(shí)時(shí)監(jiān)測和預(yù)警,及時(shí)采取措施阻止欺詐交易C.人工智能可以完全杜絕金融欺詐的發(fā)生,無需其他防范手段D.結(jié)合規(guī)則引擎和機(jī)器學(xué)習(xí)算法,提高檢測的準(zhǔn)確性和適應(yīng)性29、圖像識別是人工智能的常見應(yīng)用之一。假設(shè)要開發(fā)一個(gè)能夠準(zhǔn)確識別各種動物的圖像識別系統(tǒng),以下關(guān)于圖像識別技術(shù)的描述,正確的是:()A.僅僅依靠像素級的特征提取就能實(shí)現(xiàn)高精度的圖像識別,無需考慮對象的形狀和結(jié)構(gòu)B.深度學(xué)習(xí)模型在圖像識別中總是能夠自動學(xué)習(xí)到最有效的特征,無需人工干預(yù)特征設(shè)計(jì)C.對于復(fù)雜的圖像場景,傳統(tǒng)的圖像識別方法比基于深度學(xué)習(xí)的方法更具優(yōu)勢D.圖像識別系統(tǒng)的性能不受圖像質(zhì)量、光照條件和拍攝角度等因素的影響30、人工智能中的模型壓縮技術(shù)對于在資源受限的設(shè)備上部署模型至關(guān)重要。假設(shè)要將一個(gè)大型的深度學(xué)習(xí)模型部署到移動設(shè)備上,同時(shí)保持一定的性能。以下哪種模型壓縮方法在減少模型參數(shù)數(shù)量和計(jì)算量方面最為有效?()A.剪枝B.量化C.知識蒸餾D.以上方法綜合運(yùn)用二、操作題(本大題共5個(gè)小題,共25分)1、(本題5分)使用機(jī)器學(xué)習(xí)算法對金融數(shù)據(jù)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CI 456-2024數(shù)字孿生水利基礎(chǔ)信息編碼河流堤防代碼
- 黃金公司合同范本4篇
- 上海市安全員C證考試題庫及答案
- 香水草種苗采購合同3篇
- 臨床護(hù)理心肺復(fù)蘇注意事項(xiàng)
- T/ZHCA 003-2018化妝品影響經(jīng)表皮水分流失測試方法
- 創(chuàng)新創(chuàng)業(yè)衛(wèi)生巾
- 重慶科瑞制藥(集團(tuán))有限公司招聘筆試題庫2025
- T/YNIA 022-2024閃蒸法非織造布
- 2025年智能制造與工業(yè)互聯(lián)網(wǎng)知識測試試題及答案
- 《菊次郎的夏天》電影賞析
- 課件:《中華民族共同體概論》第十五講:新時(shí)代與中華民族共同體建設(shè)
- 汽車剎車片與剎車盤檢測考核試卷
- 2024年海南省中考?xì)v史試題
- 2024年中考語文記述文閱讀題答題模板及練習(xí):人稱及其作用分析(原卷版)
- 高空吊板作業(yè)專項(xiàng)方案
- 事業(yè)單位員工保密協(xié)議書范本(2024版)
- 化工設(shè)備機(jī)械基礎(chǔ)試題庫(附參考答案)
- JG-T+502-2016環(huán)氧樹脂涂層鋼筋
- CJJ99-2017 城市橋梁養(yǎng)護(hù)技術(shù)標(biāo)準(zhǔn)
- 國際金融(吉林大學(xué))智慧樹知到期末考試答案章節(jié)答案2024年吉林大學(xué)
評論
0/150
提交評論