2024屆江蘇省連云港市贛榆縣重點中學(xué)中考數(shù)學(xué)仿真試卷含解析_第1頁
2024屆江蘇省連云港市贛榆縣重點中學(xué)中考數(shù)學(xué)仿真試卷含解析_第2頁
2024屆江蘇省連云港市贛榆縣重點中學(xué)中考數(shù)學(xué)仿真試卷含解析_第3頁
2024屆江蘇省連云港市贛榆縣重點中學(xué)中考數(shù)學(xué)仿真試卷含解析_第4頁
2024屆江蘇省連云港市贛榆縣重點中學(xué)中考數(shù)學(xué)仿真試卷含解析_第5頁
已閱讀5頁,還剩17頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

2024屆江蘇省連云港市贛榆縣重點中學(xué)中考數(shù)學(xué)仿真試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應(yīng)位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應(yīng)的答題區(qū)內(nèi)。寫在試題卷、草稿紙上均無效。2.答題前,認(rèn)真閱讀答題紙上的《注意事項》,按規(guī)定答題。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.如圖1,E為矩形ABCD邊AD上一點,點P從點B沿折線BE﹣ED﹣DC運動到點C時停止,點Q從點B沿BC運動到點C時停止,它們運動的速度都是1cm/s.若P,Q同時開始運動,設(shè)運動時間為t(s),△BPQ的面積為y(cm2).已知y與t的函數(shù)圖象如圖2,則下列結(jié)論錯誤的是()A.AE=6cm B.C.當(dāng)0<t≤10時, D.當(dāng)t=12s時,△PBQ是等腰三角形2.如圖,A、B、C是⊙O上的三點,∠B=75°,則∠AOC的度數(shù)是()A.150° B.140° C.130° D.120°3.某校有35名同學(xué)參加眉山市的三蘇文化知識競賽,預(yù)賽分?jǐn)?shù)各不相同,取前18名同學(xué)參加決賽.其中一名同學(xué)知道自己的分?jǐn)?shù)后,要判斷自己能否進(jìn)入決賽,只需要知道這35名同學(xué)分?jǐn)?shù)的(

).A.眾數(shù) B.中位數(shù) C.平均數(shù) D.方差4.某排球隊名場上隊員的身高(單位:)是:,,,,,.現(xiàn)用一名身高為的隊員換下場上身高為的隊員,與換人前相比,場上隊員的身高()A.平均數(shù)變小,方差變小 B.平均數(shù)變小,方差變大C.平均數(shù)變大,方差變小 D.平均數(shù)變大,方差變大5.關(guān)于x的不等式的解集為x>3,那么a的取值范圍為()A.a(chǎn)>3 B.a(chǎn)<3 C.a(chǎn)≥3 D.a(chǎn)≤36.下列式子成立的有()個①﹣的倒數(shù)是﹣2②(﹣2a2)3=﹣8a5③()=﹣2④方程x2﹣3x+1=0有兩個不等的實數(shù)根A.1 B.2 C.3 D.47.已知:如圖四邊形OACB是菱形,OB在X軸的正半軸上,sin∠AOB=1213.反比例函數(shù)y=kx在第一象限圖象經(jīng)過點A,與BC交于點F.S△AOF=A.15 B.13 C.12 D.58.如圖,A,B,C,D,E,G,H,M,N都是方格紙中的格點(即小正方形的頂點),要使△DEF與△ABC相似,則點F應(yīng)是G,H,M,N四點中的()A.H或N B.G或H C.M或N D.G或M9.如圖,將△ABC繞點B順時針旋轉(zhuǎn)60°得△DBE,點C的對應(yīng)點E給好落在AB的延長線上,連接AD,下列結(jié)論不一定正確的是()A.AD∥BC B.∠DAC=∠E C.BC⊥DE D.AD+BC=AE10.如圖圖形中,是中心對稱圖形的是()A. B. C. D.二、填空題(共7小題,每小題3分,滿分21分)11.如圖,將直線y=x向下平移b個單位長度后得到直線l,l與反比例函數(shù)y=(x>0)的圖象相交于點A,與x軸相交于點B,則OA2﹣OB2的值為_____.12.一個不透明的盒子里有n個除顏色外其他完全相同的小球,其中有9個黃球每次摸球前先將盒子里的球搖勻,任意摸出一個球記下顏色后放回盒子,通過大量重復(fù)摸球試驗后發(fā)現(xiàn),摸到黃球的頻率穩(wěn)定在,那么估計盒子中小球的個數(shù)是_______.13.當(dāng)x=_____時,分式值為零.14.一組正方形按如圖所示的方式放置,其中頂點B1在y軸上,頂點C1,E1,E2,C2,E3,E4,C3……在x軸上,已知正方形A1B1C1D1的頂點C1的坐標(biāo)是(﹣,0),∠B1C1O=60°,B1C1∥B2C2∥B3C3……則正方形A2018B2018C2018D2018的頂點D2018縱坐標(biāo)是_____.15.如圖,a∥b,∠1=40°,∠2=80°,則∠3=度.16.輪船沿江從A港順流行駛到B港,比從B港返回A港少用3h,若靜水時船速為26km/h,水速為2km/h,則A港和B港相距_____km.17.函數(shù)中自變量的取值范圍是______________三、解答題(共7小題,滿分69分)18.(10分)如圖,平行四邊形ABCD的對角線AC,BD相交于點O,延長CD到E,使DE=CD,連接AE.(1)求證:四邊形ABDE是平行四邊形;(2)連接OE,若∠ABC=60°,且AD=DE=4,求OE的長.19.(5分)甲乙兩名同學(xué)做摸球游戲,他們把三個分別標(biāo)有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中.求從袋中隨機(jī)摸出一球,標(biāo)號是1的概率;從袋中隨機(jī)摸出一球后放回,搖勻后再隨機(jī)摸出一球,若兩次摸出的球的標(biāo)號之和為偶數(shù)時,則甲勝;若兩次摸出的球的標(biāo)號之和為奇數(shù)時,則乙勝;試分析這個游戲是否公平?請說明理由.20.(8分)一只不透明的袋子中裝有4個質(zhì)地、大小均相同的小球,這些小球分別標(biāo)有3,4,5,x,甲,乙兩人每次同時從袋中各隨機(jī)取出1個小球,并計算2個小球上的數(shù)字之和.記錄后將小球放回袋中攪勻,進(jìn)行重復(fù)試驗,試驗數(shù)據(jù)如下表:摸球總次數(shù)1020306090120180240330450“和為8”出現(xiàn)的頻數(shù)210132430375882110150“和為8”出現(xiàn)的頻率0.200.500.430.400.330.310.320.340.330.33解答下列問題:如果試驗繼續(xù)進(jìn)行下去,根據(jù)上表提供的數(shù)據(jù),出現(xiàn)和為8的頻率將穩(wěn)定在它的概率附近,估計出現(xiàn)和為8的概率是________;如果摸出的2個小球上數(shù)字之和為9的概率是,那么x的值可以為7嗎?為什么?21.(10分)已知△ABC內(nèi)接于⊙O,AD平分∠BAC.(1)如圖1,求證:;(2)如圖2,當(dāng)BC為直徑時,作BE⊥AD于點E,CF⊥AD于點F,求證:DE=AF;(3)如圖3,在(2)的條件下,延長BE交⊙O于點G,連接OE,若EF=2EG,AC=2,求OE的長.22.(10分)一定數(shù)量的石子可以擺成如圖所示的三角形和四邊形,古希臘科學(xué)家把1,3,6,10,15,21,…,稱為“三角形數(shù)”;把1,4,9,16,25,…,稱為“正方形數(shù)”.將三角形、正方形、五邊形都整齊的由左到右填在所示表格里:三角形數(shù)136101521a…正方形數(shù)1491625b49…五邊形數(shù)151222C5170…(1)按照規(guī)律,表格中a=___,b=___,c=___.(2)觀察表中規(guī)律,第n個“正方形數(shù)”是________;若第n個“三角形數(shù)”是x,則用含x、n的代數(shù)式表示第n個“五邊形數(shù)”是___________.23.(12分)(感知)如圖①,四邊形ABCD、CEFG均為正方形.可知BE=DG.(拓展)如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.(應(yīng)用)如圖③,四邊形ABCD、CEFG均為菱形,點E在邊AD上,點G在AD延長線上.若AE=2ED,∠A=∠F,△EBC的面積為8,菱形CEFG的面積是_______.(只填結(jié)果)24.(14分)某花卉基地種植了郁金香和玫瑰兩種花卉共30畝,有關(guān)數(shù)據(jù)如表:成本(單位:萬元/畝)銷售額(單位:萬元/畝)郁金香2.43玫瑰22.5(1)設(shè)種植郁金香x畝,兩種花卉總收益為y萬元,求y關(guān)于x的函數(shù)關(guān)系式.(收益=銷售額﹣成本)(2)若計劃投入的成本的總額不超過70萬元,要使獲得的收益最大,基地應(yīng)種植郁金香和玫瑰個多少畝?

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】(1)結(jié)論A正確,理由如下:解析函數(shù)圖象可知,BC=10cm,ED=4cm,故AE=AD﹣ED=BC﹣ED=10﹣4=6cm.(2)結(jié)論B正確,理由如下:如圖,連接EC,過點E作EF⊥BC于點F,由函數(shù)圖象可知,BC=BE=10cm,,∴EF=1.∴.(3)結(jié)論C正確,理由如下:如圖,過點P作PG⊥BQ于點G,∵BQ=BP=t,∴.(4)結(jié)論D錯誤,理由如下:當(dāng)t=12s時,點Q與點C重合,點P運動到ED的中點,設(shè)為N,如圖,連接NB,NC.此時AN=1,ND=2,由勾股定理求得:NB=,NC=.∵BC=10,∴△BCN不是等腰三角形,即此時△PBQ不是等腰三角形.故選D.2、A【解析】

直接根據(jù)圓周角定理即可得出結(jié)論.【詳解】∵A、B、C是⊙O上的三點,∠B=75°,∴∠AOC=2∠B=150°.故選A.3、B【解析】分析:由于比賽取前18名參加決賽,共有35名選手參加,根據(jù)中位數(shù)的意義分析即可.詳解:35個不同的成績按從小到大排序后,中位數(shù)及中位數(shù)之后的共有18個數(shù),故只要知道自己的成績和中位數(shù)就可以知道是否進(jìn)入決賽了.故選B.點睛:本題考查了統(tǒng)計量的選擇,以及中位數(shù)意義,解題的關(guān)鍵是正確的求出這組數(shù)據(jù)的中位數(shù)4、A【解析】分析:根據(jù)平均數(shù)的計算公式進(jìn)行計算即可,根據(jù)方差公式先分別計算出甲和乙的方差,再根據(jù)方差的意義即可得出答案.詳解:換人前6名隊員身高的平均數(shù)為==188,方差為S2==;換人后6名隊員身高的平均數(shù)為==187,方差為S2==∵188>187,>,∴平均數(shù)變小,方差變小,故選:A.點睛:本題考查了平均數(shù)與方差的定義:一般地設(shè)n個數(shù)據(jù),x1,x2,…xn的平均數(shù)為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數(shù)據(jù)的波動大小,方差越大,波動性越大,反之也成立.5、D【解析】分析:先解第一個不等式得到x>3,由于不等式組的解集為x>3,則利用同大取大可得到a的范圍.詳解:解不等式2(x-1)>4,得:x>3,解不等式a-x<0,得:x>a,∵不等式組的解集為x>3,∴a≤3,故選D.點睛:本題考查了解一元一次不等式組:解一元一次不等式組時,一般先求出其中各不等式的解集,再求出這些解集的公共部分,利用數(shù)軸可以直觀地表示不等式組的解集.解集的規(guī)律:同大取大;同小取小;大小小大中間找;大大小小找不到.6、B【解析】

根據(jù)倒數(shù)的定義,冪的乘方、二次根式的混合運算法則以及根的判別式進(jìn)行判斷.【詳解】解:①﹣的倒數(shù)是﹣2,故正確;②(﹣2a2)3=﹣8a6,故錯誤;③(-)=﹣2,故錯誤;④因為△=(﹣3)2﹣4×1×1=5>0,所以方程x2﹣3x+1=0有兩個不等的實數(shù)根,故正確.故選B.【點睛】考查了倒數(shù)的定義,冪的乘方、二次根式的混合運算法則以及根的判別式,屬于比較基礎(chǔ)的題目,熟記計算法則即可解答.7、A【解析】

過點A作AM⊥x軸于點M,設(shè)OA=a,通過解直角三角形找出點A的坐標(biāo),再根據(jù)四邊形OACB是菱形、點F在邊BC上,即可得出S△AOF=S菱形OBCA,結(jié)合菱形的面積公式即可得出a的值,進(jìn)而依據(jù)點A的坐標(biāo)得到k的值.【詳解】過點A作AM⊥x軸于點M,如圖所示.設(shè)OA=a=OB,則,在Rt△OAM中,∠AMO=90°,OA=a,sin∠AOB=1213∴AM=OA?sin∠AOB=1213a,OM=5∴點A的坐標(biāo)為(513a,12∵四邊形OACB是菱形,S△AOF=392∴12OB×AM=39即12×a×12解得a=±132∴a=132,即A(5∵點A在反比例函數(shù)y=kx∴k=52故選A.【解答】解:【點評】本題考查了菱形的性質(zhì)、解直角三角形以及反比例函數(shù)圖象上點的坐標(biāo)特征,解題的關(guān)鍵是利用S△AOF=12S菱形OBCA8、C【解析】

根據(jù)兩三角形三條邊對應(yīng)成比例,兩三角形相似進(jìn)行解答【詳解】設(shè)小正方形的邊長為1,則△ABC的各邊分別為3、、,只能F是M或N時,其各邊是6、2,2.與△ABC各邊對應(yīng)成比例,故選C【點睛】本題考查了相似三角形的判定,相似三角形對應(yīng)邊成比例是解題的關(guān)鍵9、C【解析】

利用旋轉(zhuǎn)的性質(zhì)得BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,再通過判斷△ABD為等邊三角形得到AD=AB,∠BAD=60°,則根據(jù)平行線的性質(zhì)可判斷AD∥BC,從而得到∠DAC=∠C,于是可判斷∠DAC=∠E,接著利用AD=AB,BE=BC可判斷AD+BC=AE,利用∠CBE=60°,由于∠E的度數(shù)不確定,所以不能判定BC⊥DE.【詳解】∵△ABC繞點B順時針旋轉(zhuǎn)60°得△DBE,點C的對應(yīng)點E恰好落在AB的延長線上,∴BA=BD,BC=BE,∠ABD=∠CBE=60°,∠C=∠E,∴△ABD為等邊三角形,∴AD=AB,∠BAD=60°,∵∠BAD=∠EBC,∴AD∥BC,∴∠DAC=∠C,∴∠DAC=∠E,∵AE=AB+BE,而AD=AB,BE=BC,∴AD+BC=AE,∵∠CBE=60°,∴只有當(dāng)∠E=30°時,BC⊥DE.故選C.【點睛】本題考查了旋轉(zhuǎn)的性質(zhì):對應(yīng)點到旋轉(zhuǎn)中心的距離相等;對應(yīng)點與旋轉(zhuǎn)中心所連線段的夾角等于旋轉(zhuǎn)角;旋轉(zhuǎn)前、后的圖形全等.也考查了等邊三角形的性質(zhì).10、D【解析】

根據(jù)中心對稱圖形的概念和識別.【詳解】根據(jù)中心對稱圖形的概念和識別,可知D是中心對稱圖形,A、C是軸對稱圖形,D既不是中心對稱圖形,也不是軸對稱圖形.故選D.【點睛】本題考查中心對稱圖形,掌握中心對稱圖形的概念,會判斷一個圖形是否是中心對稱圖形.二、填空題(共7小題,每小題3分,滿分21分)11、1.【解析】解:∵平移后解析式是y=x﹣b,代入y=得:x﹣b=,即x2﹣bx=5,y=x﹣b與x軸交點B的坐標(biāo)是(b,0),設(shè)A的坐標(biāo)是(x,y),∴OA2﹣OB2=x2+y2﹣b2=x2+(x﹣b)2﹣b2=2x2﹣2xb=2(x2﹣xb)=2×5=1,故答案為1.點睛:本題是反比例函數(shù)綜合題,用到的知識點有:一次函數(shù)的平移規(guī)律,一次函數(shù)與反比例函數(shù)的交點坐標(biāo),利用了轉(zhuǎn)化及方程的思想,其中利用平移的規(guī)律表示出y=x平移后的解析式是解答本題的關(guān)鍵.12、1【解析】

根據(jù)利用頻率估計概率得到摸到黃球的概率為1%,然后根據(jù)概率公式計算n的值.【詳解】解:根據(jù)題意得=1%,解得n=1,所以這個不透明的盒子里大約有1個除顏色外其他完全相同的小球.故答案為1.【點睛】本題考查了利用頻率估計概率:大量重復(fù)實驗時,事件發(fā)生的頻率在某個固定位置左右擺動,并且擺動的幅度越來越小,根據(jù)這個頻率穩(wěn)定性定理,可以用頻率的集中趨勢來估計概率,這個固定的近似值就是這個事件的概率.當(dāng)實驗的所有可能結(jié)果不是有限個或結(jié)果個數(shù)很多,或各種可能結(jié)果發(fā)生的可能性不相等時,一般通過統(tǒng)計頻率來估計概率.13、﹣1.【解析】試題解析:分式的值為0,則:解得:故答案為14、×()2【解析】

利用正方形的性質(zhì)結(jié)合銳角三角函數(shù)關(guān)系得出正方形的邊長,進(jìn)而得出變化規(guī)律即可得出答案.【詳解】解:∵∠B1C1O=60°,C1O=,∴B1C1=1,∠D1C1E1=30°,∵sin∠D1C1E1=,∴D1E1=,∵B1C1∥B2C2∥B3C3∥…∴60°=∠B1C1O=∠B2C2O=∠B3C3O=…∴B2C2=,B3C3=.故正方形AnBnCnDn的邊長=()n-1.∴B2018C2018=()2.∴D2018E2018=×()2,∴D的縱坐標(biāo)為×()2,故答案為×()2.【點睛】此題主要考查了正方形的性質(zhì)以及銳角三角函數(shù)關(guān)系,得出正方形的邊長變化規(guī)律是解題關(guān)鍵15、120【解析】

如圖,∵a∥b,∠2=80°,∴∠4=∠2=80°(兩直線平行,同位角相等)∴∠3=∠1+∠4=40°+80°=120°.故答案為120°.16、1.【解析】

根據(jù)逆流速度=靜水速度-水流速度,順流速度=靜水速度+水流速度,表示出逆流速度與順流速度,根據(jù)題意列出方程,求出方程的解問題可解.【詳解】解:設(shè)A港與B港相距xkm,

根據(jù)題意得:,

解得:x=1,

則A港與B港相距1km.

故答案為:1.【點睛】此題考查了分式方程的應(yīng)用題,解答關(guān)鍵是在順流、逆流過程中找出等量關(guān)系構(gòu)造方程.17、x≤2且x≠1【解析】

解:根據(jù)題意得:且x?1≠0,解得:且故答案為且三、解答題(共7小題,滿分69分)18、(1)見解析;(2)2.【解析】

(1)四邊形ABCD是平行四邊形,由平行四邊形的性質(zhì),可得AB=DE,AB//DE,則四邊形ABDE是平行四邊形;(2)因為AD=DE=1,則AD=AB=1,四邊形ABCD是菱形,由菱形的性質(zhì)及解直角三角形可得AO=AB?sin∠ABO=2,BO=AB?cos∠ABO=2,BD=1,則AE=BD,利用勾股定理可得OE.【詳解】(1)證明:∵四邊形ABCD是平行四邊形,∴AB∥CD,AB=CD.∵DE=CD,∴AB=DE.∴四邊形ABDE是平行四邊形;(2)∵AD=DE=1,∴AD=AB=1.∴?ABCD是菱形,∴AB=BC,AC⊥BD,,.又∵∠ABC=60°,∴∠ABO=30°.在Rt△ABO中,,.∴.∵四邊形ABDE是平行四邊形,∴AE∥BD,.又∵AC⊥BD,∴AC⊥AE.在Rt△AOE中,.【點睛】此題考查平行四邊形的性質(zhì)及判斷,考查菱形的判斷及性質(zhì),及解直角三角形,解題關(guān)鍵在于掌握判定定理和利用三角函數(shù)進(jìn)行計算.19、(1);(2)這個游戲不公平,理由見解析.【解析】

(1)由把三個分別標(biāo)有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中,直接利用概率公式求解即可求得答案;(2)首先根據(jù)題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結(jié)果與甲勝,乙勝的情況,即可求得求概率,比較大小,即可知這個游戲是否公平.【詳解】解:(1)由于三個分別標(biāo)有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中,故從袋中隨機(jī)摸出一球,標(biāo)號是1的概率為:;(2)這個游戲不公平.畫樹狀圖得:∵共有9種等可能的結(jié)果,兩次摸出的球的標(biāo)號之和為偶數(shù)的有5種情況,兩次摸出的球的標(biāo)號之和為奇數(shù)的有4種情況,∴P(甲勝)=,P(乙勝)=.∴P(甲勝)≠P(乙勝),故這個游戲不公平.【點睛】本題考查的是游戲公平性的判斷.判斷游戲公平性就要計算每個事件的概率,概率相等就公平,否則就不公平.20、(1)出現(xiàn)“和為8”的概率是0.33;(2)x的值不能為7.【解析】

(1)利用頻率估計概率結(jié)合表格中數(shù)據(jù)得出答案即可;(2)假設(shè)x=7,根據(jù)題意先列出樹狀圖,得出和為9的概率,再與進(jìn)行比較,即可得出答案.【詳解】解:(1)隨著試驗次數(shù)不斷增加,出現(xiàn)“和為8”的頻率逐漸穩(wěn)定在0.33,故出現(xiàn)“和為8”的概率是0.33.(2)x的值不能為7.理由:假設(shè)x=7,則P(和為9)=≠,所以x的值不能為7.【點睛】此題主要考查了利用頻率估計概率以及樹狀圖法求概率,正確畫出樹狀圖是解題關(guān)鍵.21、(1)證明見解析;(1)證明見解析;(3)1.【解析】

(1)連接OB、OC、OD,根據(jù)圓心角與圓周角的性質(zhì)得∠BOD=1∠BAD,∠COD=1∠CAD,又AD平分∠BAC,得∠BOD=∠COD,再根據(jù)圓周角相等所對的弧相等得出結(jié)論.(1)過點O作OM⊥AD于點M,又一組角相等,再根據(jù)平行線的性質(zhì)得出對應(yīng)邊成比例,進(jìn)而得出結(jié)論;(3)延長EO交AB于點H,連接CG,連接OA,BC為⊙O直徑,則∠G=∠CFE=∠FEG=90°,四邊形CFEG是矩形,得EG=CF,又AD平分∠BAC,再根據(jù)鄰補角與余角的性質(zhì)可得∠BAF=∠ABE,∠ACF=∠CAF,AE=BE,AF=CF,再根據(jù)直角三角形的三角函數(shù)計算出邊的長,根據(jù)“角角邊”證明出△HBO∽△ABC,根據(jù)相似三角形的性質(zhì)得出對應(yīng)邊成比例,進(jìn)而得出結(jié)論.【詳解】(1)如圖1,連接OB、OC、OD,∵∠BAD和∠BOD是所對的圓周角和圓心角,∠CAD和∠COD是所對的圓周角和圓心角,∴∠BOD=1∠BAD,∠COD=1∠CAD,∵AD平分∠BAC,∴∠BAD=∠CAD,∴∠BOD=∠COD,∴=;(1)如圖1,過點O作OM⊥AD于點M,∴∠OMA=90°,AM=DM,∵BE⊥AD于點E,CF⊥AD于點F,∴∠CFM=90°,∠MEB=90°,∴∠OMA=∠MEB,∠CFM=∠OMA,∴OM∥BE,OM∥CF,∴BE∥OM∥CF,∴,∵OB=OC,∴=1,∴FM=EM,∴AM﹣FM=DM﹣EM,∴DE=AF;(3)延長EO交AB于點H,連接CG,連接OA.∵BC為⊙O直徑,∴∠BAC=90°,∠G=90°,∴∠G=∠CFE=∠FEG=90°,∴四邊形CFEG是矩形,∴EG=CF,∵AD平分∠BAC,∴∠BAF=∠CAF=×90°=45°,∴∠ABE=180°﹣∠BAF﹣∠AEB=45°,∠ACF=180°﹣∠CAF﹣∠AFC=45°,∴∠BAF=∠ABE,∠ACF=∠CAF,∴AE=BE,AF=CF,在Rt△ACF中,∠AFC=90°,∴sin∠CAF=,即sin45°=,∴CF=1×=,∴EG=,∴EF=1EG=1,∴AE=3,在Rt△AEB中,∠AEB=90°,∴AB==6,∵AE=BE,OA=OB,∴EH垂直平分AB,∴BH=EH=3,∵∠OHB=∠BAC,∠ABC=∠ABC∴△HBO∽△ABC,∴,∴OH=1,∴OE=EH﹣OH=3﹣1=1.【點睛】本題考查了相似三角形的判定與性質(zhì)和圓的相關(guān)知識點,解題的關(guān)鍵是熟練的掌握相似三角形的判定與性質(zhì)和圓的相關(guān)知識點.22、123n2n2+x-n【解析】分析:(1)、首先根據(jù)題意得出前6個“三角形數(shù)”分別是多少,從而得出a的值;前5個“正方形數(shù)”分別是多少,從而得出b的值;前4個“正方形數(shù)”分別是多少,從而得出c的值;(2)、根據(jù)前面得出的一般性得出答案.詳解:(1)∵前6個“三角形數(shù)”分別是:1=、3=、6=、10=、15=、21=,

∴第n個“三角形數(shù)”是,∴a=7×82=17×82=1.

∵前5個“正方形數(shù)”分別是:1=12,4=22,9=32,16=42,25

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論