




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
第第頁答案第=page11頁,共=sectionpages22頁2025年中考數(shù)學總復習《反比例函數(shù)與幾何綜合》專項測試卷(附答案)學校:___________姓名:___________班級:___________考號:___________1.已知,矩形在平面直角坐標系中的位置如圖所示,點C在x軸的正半軸上,點A在y軸的正半軸上,已知點B的坐標為,反比例函數(shù)的圖象經(jīng)過的中點D,且與交于點E,順次連接O,D,E.(1)求線段的長;(2)在線段上存在一點M,當?shù)拿娣e等于時,求點M的坐標;(3)平面直角坐標系中是否存在一點N,使得O、D、E、N四點構(gòu)成平行四邊形?若存在,請直接寫出N的坐標;若不存在,請說明理由.2.如圖,點、都在反比例函數(shù)的圖像上.(1)求m、k的值;(2)如果M為x軸上一點,N為y軸上一點,以A、B、M、N為頂點的四邊形是平行四邊形,直接寫出點M、N的坐標,并畫出相應(yīng)的圖形.3.如圖,一次函數(shù)的圖象和反比例函數(shù)的圖象交于和兩點.(1)求一次函數(shù)和反比例函數(shù)的表達式;(2)請直接寫出不等式的解集;(3)連結(jié),設(shè)點為軸上一點,使得為等腰三角形,求點的坐標.4.如圖,已知函數(shù)的圖像與x、y軸分別相交于A、B兩點,的邊與y軸交于點E,且E為中點,反比例函數(shù)的圖像經(jīng)過C、D兩點.(1)求k的值;(2)已知點P在該雙曲線上,點Q在y軸上,若以點A、B、P、Q為頂點的四邊形是平行四邊形,試寫出所有滿足條件的點P、Q的坐標.5.如圖,在平面直角坐標系中,點、在反比例函數(shù)的圖象上.(1)如圖,若直線的解析式為,點,求點的坐標;(2)如圖,以為邊作矩形,點、的坐標分別是、,求的值.6.如圖,在平面直角坐標系中,直線:與反比例函數(shù)的圖象分別交于點和點.
(1)求直線的表達式;(2)如圖2,直線經(jīng)過點與反比例函數(shù)的圖象交于點,與軸交于點,點將線段分成,兩條線段,且,連接,求的面積;(3)在(2)的條件下,坐標軸上是否存在點,使是以為斜邊的直角三角形,若存在,請求出點的坐標;若不存在,請說明理由.7.如圖,平面直角坐標系中,矩形的頂點在函數(shù)的圖象上,.將線段沿軸正方向平移得線段(點平移后的對應(yīng)點為),交函數(shù)的圖象于點,過點作軸于點.(1)求函數(shù)關(guān)系式;(2)的面積與四邊形的面積的數(shù)量關(guān)系為_________;(填“”,“”或“”)(3)證明:.8.如圖,在平面直角坐標系中,O為坐標原點,點A、B在函數(shù)的圖象上(點A的縱坐標大于點B的縱坐標),點A的坐標為,過點A作軸于點D,過點B作軸于點C,,連結(jié)、.(1)求B點的坐標.(2)求四邊形的面積.9.如圖,點,分別是反比例函數(shù)的圖象與正比例函數(shù)的圖象的交點.其中點的坐標為.過點作軸于點,過點作軸于點,連接,.(1)求反比例函數(shù)與正比例函數(shù)的解析式;(2)寫出點的坐標,并求四邊形的面積;(3)請結(jié)合函數(shù)圖象,直接寫出不等式的解集.10.如圖1,在平面直角坐標系中,點B,D是直線上第一象限內(nèi)的兩個動點,點B,D的橫坐標分別為m,n(),以線段為對角線作矩形,軸.(1)求證:四邊形是正方形;(2)如圖2,若反比例函數(shù)的圖象過點A.以點O為圓心,長為半徑作.①(用含m,n的代數(shù)式表示);②若,當與相切時,求k的值.11.如圖,一次函數(shù)與反比例函數(shù)y(k≠0)的圖象相交于,B兩點,連接,.(1)求這個反比例函數(shù)的表達式;(2)求的面積;(3)根據(jù)圖像寫出不等式的解集;(4)若點M在第一象限內(nèi)反比例函數(shù)圖象上,點N在x軸上方且在一次函數(shù)圖象上,若以O(shè),B,M,N為頂點的四邊形是平行四邊形,求點M的坐標.12.如圖,一次函數(shù)()的圖像與反比例函數(shù)()的圖像交于點,.(在平面直角坐標系中,若兩點分別為,,則中點坐標為)(1)求反比例函數(shù)和一次函數(shù)的表達式;(2)利用圖像,直接寫出不等式的解集;(3)已知點在軸上,點在反比例函數(shù)圖像上.若以A、B、C、D為頂點的四邊形是平行四邊形,請求出點D的坐標.13.如圖,一次函數(shù)的圖像與x軸、y軸分別交于點A、B,四邊形是正方形,反比例函數(shù)的圖像經(jīng)過點D.(1)求k的值;(2)若將正方形向下平移m個單位長度后,點C剛好落在反比例函數(shù)的圖像上,則_________.14.如圖,中,點在第二象限,點在軸正半軸上,軸,,,反比例函數(shù)經(jīng)過點.(1)求反比例函數(shù)的解析式;(2)尺規(guī)作圖:(保留作圖痕跡,不寫作法)①求作等腰三角形,點在第一象限,,點為的中點;②求作菱形;(3)將菱形沿軸向下平移多少個單位長度后點會落在該反比例函數(shù)的圖象上?15.在平面直角坐標系中,若某函數(shù)的圖象經(jīng)過矩形對角線的兩個端點,則定義該函數(shù)為矩形的“友好函數(shù)”,例如:如圖1,矩形,經(jīng)過點和點的一次函數(shù)是矩形的“友好函數(shù)”.(1)如圖2,矩形的頂點坐標分別為,反比例函數(shù)經(jīng)過點B,求反比例函數(shù)的函數(shù)表達式,并判斷該函數(shù)是否為矩形的“友好函數(shù)”;(2)矩形在第一象限,軸,軸,且點A的坐標為,正比例函數(shù)經(jīng)過點A,且是矩形的“友好函數(shù)”,反比例函數(shù)經(jīng)過點B,且是矩形的“友好函數(shù)”.①如圖3,當時,將矩形沿折疊,點B的對應(yīng)點為E,若點E落在y軸上,求k的值;②設(shè)矩形的周長為y,當矩形的周長時,設(shè)矩形的面積為;當矩形的周長時,設(shè)矩形的面積為,求出的值.參考答案1.(1)(2)(3)存在,N的坐標為或或【分析】此題屬于反比例函數(shù)綜合題,涉及的知識有:坐標與圖形性質(zhì),平行四邊形的性質(zhì),中點坐標公式,矩形的性質(zhì),熟練掌握各自的性質(zhì)是解本題的關(guān)鍵.(1)根據(jù)B的坐標,利用中點坐標公式求出D的坐標,確定出反比例函數(shù)解析式,進而求出E的坐標,即可求出的長;(2)根據(jù)D坐標確定出直線與直線解析式,過點M作軸交于點N,設(shè),,由,把已知面積代入求出t的值,即可確定出M坐標;(3)由題意得:,,,設(shè),分三種情況考慮:當四邊形為平行四邊形時;當四邊形為平行四邊形時;當四邊形為平行四邊形時即可.【詳解】(1)解:∵點B的坐標為,D為中點,∴,∵反比例函數(shù)的圖象經(jīng)過的中點D,∴,∴反比例函數(shù)解析式為,把代入得:,即,則;(2)解:由,得到直線解析式為,由,得到直線解析式為,過點M作軸交于點N,設(shè),則,∵,∴,解得:,則點M坐標為;(3)解:存在;由題意得:,,,設(shè),分三種情況考慮:當四邊形為平行四邊形時,可得,,解得:,,即;當四邊形為平行四邊形時,可得,,解得:,,即;當四邊形為平行四邊形時,可得,,解得:,,即,綜上,N的坐標為或或.2.(1),(2)或,畫圖見解析【分析】(1)根據(jù)反比例函數(shù)解析式,利用反比例函數(shù)圖象上點的坐標特征列出關(guān)于m的方程,從而求得k、m的值;(2)過點A作軸,過點B作軸,兩線交于P,求出A、B的坐標,根據(jù)平行四邊形性質(zhì)得,證明,得,分類得或.【詳解】(1)解:∵點、都在反比例函數(shù)的圖象上,∴,∴,解得,∴;(2)解:∵,∴,過點A作軸,過點B作軸,兩線交于P,∴,∵M為x軸上一點,N為y軸上一點,以A、B、M、N為頂點的四邊形是平行四邊形,∴,∴,∵,∴,∴,∴或.【點睛】此題考查反比例函數(shù)與平行四邊形綜合.熟練掌握待定系數(shù)法求反比例函數(shù)解析式,反比例函數(shù)的圖象和性質(zhì),全等三角形的判定和性質(zhì),平行四邊形的性質(zhì),作輔助線,是解題關(guān)鍵.3.(1),(2)或(3)或或或【分析】本題考查了反比例函數(shù)與一次函數(shù)綜合,熟練掌握用待定系數(shù)法求反比例函數(shù)解析式和一次函數(shù)的解析式,函數(shù)與不等式,等腰三角形性質(zhì),分類討論,是解題的關(guān)鍵.(1)先把A點坐標代入中求出m得到反比例函數(shù)解析式,再利用反比例函數(shù)解析式確定B點坐標,然后利用待定系數(shù)法求一次函數(shù)解析式;(2)結(jié)合一次函數(shù)圖象與反比例函數(shù)圖象,寫出一次函數(shù)圖象在反比例函數(shù)圖象下方所對應(yīng)的自變量的范圍即可;(3)分,列方程求得C的橫坐標,即得.【詳解】(1)解:點在的圖象上,,,.將代入,得,,.將代入中,得,解得,.(2)解:∵函數(shù)和的圖象交于和兩點,如圖,∴不等式的解集為或.(3)解:,.∵為等腰三角形,當時,得到;當時,,∵C點在軸負半軸,;當時,設(shè).∵中點為,∴,解得.綜上所述,C點坐標為或或或.4.(1)4(2)當為對角線時,,;當為對角線時,,;當為對角線時,,【分析】本題考查了反比例函數(shù)與幾何綜合、一次函數(shù)的性質(zhì)、平行四邊形的性質(zhì),熟練掌握相關(guān)知識點是解題的關(guān)鍵.(1)利用一次函數(shù)的性質(zhì)求出點的坐標,設(shè),根據(jù)E為中點,且點E在y軸上,得出,再利用平行四邊形的性質(zhì)表示出點的坐標,結(jié)合反比例函數(shù)的圖像經(jīng)過C、D兩點,求出的值,再把點代入即可解答;(2)由(1)得,反比例函數(shù)解析式為,,,根據(jù)題意分①當為對角線;②當為對角線;③當為對角線三種情況討論,利用平行四邊形的性質(zhì)即可求解.【詳解】(1)解:令,則,令,則,解得:,,,設(shè),E為中點,且點E在y軸上,,解得:,,,,,,反比例函數(shù)的圖像經(jīng)過C、D兩點,,解得:,,,代入到,得,的值為4.(2)解:由(1)得,反比例函數(shù)解析式為,,,設(shè),,①當為對角線時,則,解得:,,;②當為對角線時,則,解得:,,;③當為對角線時,則,解得:,,.綜上所述,當為對角線時,,;當為對角線時,,;當為對角線時,,.5.(1)(2)【分析】(1)將點代入即可求出,得,,聯(lián)立,求解即可;(2)如圖,過點作軸于點,過點作軸于點,設(shè),根據(jù)矩形的性質(zhì)及平移的性質(zhì)得,,,,,,證明,得,即,推出①,再根據(jù)函數(shù)圖象上點的坐標特征得,推出②,聯(lián)立方程①、②求解即可.【詳解】(1)解:∵點在反比例函數(shù)的圖象上和直線:上,∴,∴,∴,此時反比例函數(shù)的解析式為,聯(lián)立,解得:,,∴,即點的坐標為;(2)如圖,過點作軸于點,過點作軸于點,設(shè),∴,,,∵四邊形是矩形,、,∴,,,∴線段向左平移個單位,再向上平移個單位得到,∴,∵,∴,∴,∴,即,∴①,又∵、在反比例函數(shù)的圖象上,∴,∴②,聯(lián)立方程①、②,得:,解得:,∴,即的值為.【點睛】本題是反比例函數(shù)與幾何的綜合題,考查了反比例函數(shù)圖象上點的坐標特征,求反比例函數(shù)的解析式,矩形的性質(zhì),平移的性質(zhì),相似三角形的判定和性質(zhì),二元一次方程組的應(yīng)用等知識點,利用方程的思想解決問題、通過作輔助線構(gòu)造相似三角形是解題的關(guān)鍵.6.(1)(2)(3)或或或【分析】(1)先求出的值,再利用待定系數(shù)法即可求解;(2)聯(lián)立方程組得求出點B的坐標,過點C作軸于點M,過點B作軸于點N,利用平行線成比例求出,再求出,求出直線的函數(shù)表達式,得到點B,點G的坐標,即可求解;(3)取的中點M,以點M為圓心,為半徑作交坐標軸于點E,連接,,分點E在y軸上,設(shè)點E的坐標為,點E在x軸上,設(shè)點E的坐標為,兩種情況討論即可.【詳解】(1)解:將代入,,即,將代入,,直線的表達式為;(2)解:直線與反比例函數(shù)交于點A,B,聯(lián)立方程組得解得,,過點C作軸于點M,過點B作軸于點N,
,,,在中,當時,,,設(shè)直線的函數(shù)表達式為,直線的函數(shù)表達式為,直線與x軸交于點D,,直線與x軸交于點G,,,;(3)解:如圖,取的中點M,以點M為圓心,為半徑作交坐標軸于點E,連接,,
為的直徑,,是的中點,,當點E在y軸上時,設(shè)點E的坐標為,,,,,當點E在x軸上時,設(shè)點E的坐標為,,,,,綜上所述,點E的坐標為或或或.【點睛】本題考查了一次函數(shù)與反比例的綜合題,待定系數(shù)法求函數(shù)的解析式,直角三角形的性質(zhì),平行線成比例,圓周角定理,正確的作出輔助線是解題的關(guān)鍵.7.(1)(2)(3)見解析【分析】(1)根據(jù)矩形的性質(zhì)可得點,再把代入,即可求解;(2)連接,交于點K,根據(jù)反比例函數(shù)比例系數(shù)的幾何意義,可得,從而得到,即可求解;(3)設(shè)平移距離為n,可得點,,從而得到,可證明,從而得到,再由,可得,即可求證.【詳解】(1)解:∵四邊形是矩形,∴軸,軸,∵,∴點,把點代入,得:,∴函數(shù)關(guān)系式為;(2)解:如圖,連接,交于點K,∵,∴,∴,∴的面積四邊形的面積;故答案為:;(3)解:如圖,設(shè)平移距離為n,根據(jù)題意得:四邊形是矩形,∴,∴點,∵反比例函數(shù),∴,∴,∴,∴,∴,∵,∴,∴.【點睛】本題考查的是反比例函數(shù)的圖象與性質(zhì),平移的性質(zhì),矩形的判定與性質(zhì),相似三角形的判定與性質(zhì),作出合適的輔助線是解本題的關(guān)鍵.8.(1)(2)【分析】本題主要考查了反比例函數(shù)圖象上點的坐標特征,運用數(shù)形結(jié)合思想是解答此題的關(guān)鍵.(1)將點A的坐標代入求出k的值,然后求出點B的坐標即可;(2)利用計算解題.【詳解】(1)解:將點A的坐標代入可得,的值為8;函數(shù)的解析式為,,,,,點B的橫坐標為6,將代入,得,點B的坐標.(2).9.(1),(2)點的坐標為,(3)或【分析】本題是反比例函數(shù)和一次函數(shù)的交點問題,考查了待定系數(shù)法求函數(shù)解析式,反比例函數(shù)的性質(zhì),平行四邊形的面積.(1)根據(jù)點在利用待定系數(shù)法即可得出反比例函數(shù)與正比例函數(shù)的解析式;(2)由反比例函數(shù)及正比例函數(shù)的性質(zhì)可知,點的坐標為,再結(jié)合平行四邊形的性質(zhì)即可求解;(3)直接根據(jù)兩函數(shù)的圖象即可得出不等式的解集.【詳解】(1)解:將代入,可得:,∴反比例函數(shù)的解析式為,將代入,可得:,即∴正比例函數(shù)的解析式為;(2)由反比例函數(shù)及正比例函數(shù)的性質(zhì)可知,點與點關(guān)于原點成中心對稱,∴點的坐標為,∵軸于點,軸于點,∴且,,∴四邊形為平行四邊形,則;(3)解:∵,,由函數(shù)圖象可知,當或是直線在雙曲線的下方,∴不等式的解集為或.10.(1)見解析(2)①;②【分析】(1)根據(jù)題意得,由矩形的性質(zhì)結(jié)合軸,求出,再求出,即可證明;(2)①由(1)得,即可求出k的值;②根據(jù)題意,設(shè)中點為,則,根據(jù),可得當與相切時,切點為T,則,求出,求出,建立方程求出,即可求解.【詳解】(1)證明:∵四邊形是矩形,且軸,∴軸,∵點B,D是直線上,點B,D的橫坐標分別為m,n(),∴,∴,∴,∴矩形是正方形;(2)解:①由(1)得,∵反比例函數(shù)的圖象過點A,∴,∴;②根據(jù)題意,設(shè)中點為,則,∵,∴當與相切時,切點為T,則,∴,∵,∴,整理得:,解得:,∴.【點睛】本題考查的是反比例函數(shù)與幾何的綜合,一次函數(shù),切線的性質(zhì)、正方形的判定與性質(zhì)、勾股定理,掌握切線的判定定理、靈活運用分情況討論思想是解題的關(guān)鍵.11.(1)(2)6(3)或(4)或【分析】本題考查了反比例函數(shù)與特殊四邊形的綜合題目,涉及求反比例函數(shù)解析式,三角形的面積公式,反比例函數(shù)與一次函數(shù)的交點問題,熟練掌握知識點并運用分類討論的思想是解題的關(guān)鍵.(1)先利用一次函數(shù)求出A點的坐標,再將A點坐標代入反比例函數(shù)解析式即可;(2)先求出B、C點坐標,再利用三角形的面積公式求解即可;(3)根據(jù)函數(shù)圖象,即可列出不等式的關(guān)系,從而得解,(4)過點B作y軸的垂線,垂足為點D,過M作y軸的垂線,過N作x軸的垂線,交點為E,證明,得到,,再分兩種情況,即可得出答案.【詳解】(1)解:把代入一次函數(shù),得,解得,∴,把代入反比例函數(shù)得,∴反比例函數(shù)的表達式為;(2)解:由題意得方程組,解得,,∴,設(shè)一次函數(shù)交y軸于點C,令中,則,∴,∴,∴;(3)從圖像看,不等式的解集就是一次函數(shù)圖象在反比例函數(shù)圖象上方時的取值范圍.∴解集為或.(4)解:如圖,由題意得,,過點B作y軸的垂線,垂足為點D,過M作y軸的垂線,過N作x軸的垂線,交點為E,則,∴,,當點在點A的左側(cè)時,設(shè),則,∵在上,∴,即,∴,,經(jīng)檢驗是原方程的根且符合題意,,不合題意,舍去;當時,,∴;當點在點A的右側(cè)時,設(shè),則,∵在上,∴,即,∴,,經(jīng)檢驗是原方程的根且符合題意,,不合題意,舍去;當時,,∴;綜上所述:點M的坐標為或.12.(1),(2)或(3)【分析】本題屬于反比例函數(shù)綜合題,考查了反比例函數(shù)的性質(zhì),待定系數(shù)法,解不等式等知識,解題的關(guān)鍵是掌握待定系數(shù)法,學會構(gòu)建方程組確定交點坐標.(1)由待定系數(shù)法即可求解;(2)觀察函數(shù)圖象即可求解;(3)設(shè)點,,分,是對角線,,是對角線,,是對角線三種情況討論求解即可.【詳解】(1)解:∵,在反比例函數(shù)圖像上,∴,解得:,∴反比例函數(shù)的表達式為:;
∴,∴,∴點,∵點,在一次函數(shù),∴,解得:,∴,∴一次函數(shù)的表達式為:.(2)解:由(1)得,,當一次函數(shù)的圖像在反比例函數(shù)的圖像上時,,∴或時,.(3)解:∵點在軸上,點在反比例函數(shù)圖像,∴設(shè)點,,∵四邊形是平行四邊形,∴①當,是對角線,∴,解得:,∴點D的坐標為;②當,是對角線時,∴,解得:,∴點D的坐標為;③當,是對角線時,∴,解得:,∴點D的坐標為;綜上所述,點的坐標為:,,時,以、、、為頂點的四邊形是平行四邊形.13.(1)12(2)3【分析】本題主要考查了求反比例函數(shù)關(guān)系式,反比例函數(shù)與幾何圖形,對于(1),過點D作軸,求出,再證明,可得,然后求出點D的坐標,即可得出答案;對于(2),仿照(1)求出點C的坐標,再將點C的橫坐標代入反比例函數(shù)關(guān)系式可得縱坐標,即可得出解.【詳解】(1)解:過點D作軸,交x軸于點E,當時,;當時,,∴點,∴.∵四邊形是正方形,∴,∴,∴.∵,∴,∴,∴,∴點D的坐標為.∵點D在反比例函數(shù)的圖象上,∴;(2)解:如圖所示,過點C作,交y軸于點F,由(1)可知,∴,∴,∴點C的坐標是.當時,,∴.故答案為:3.14.(1)(2)①圖見解析;②圖見解析(3)將菱形沿軸向下平移4個單位長度后點會落在該反比例函數(shù)的圖象上【分析】本題主要考查了求反比例函數(shù)的關(guān)系
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 嵌入式技術(shù)在醫(yī)療行業(yè)的應(yīng)用試題及答案
- 數(shù)據(jù)庫管理中的挑戰(zhàn)與機遇試題及答案
- 稀有稀土金屬加工前沿技術(shù)探討考核試卷
- 風險控制在嵌入式項目中的應(yīng)用試題及答案
- 嵌入式產(chǎn)品交付策略試題及答案
- 公路管理體系與規(guī)范試題及答案
- 全面修訂安全管理制度
- 工地排水配件管理制度
- 實戰(zhàn)模擬計算機三級數(shù)據(jù)庫試題及答案
- 公司保溫車間管理制度
- 阿里巴巴薪酬管理制度
- 2025年河南省安陽市滑縣中考一?;瘜W試題(含答案)
- 江蘇省南通市南通第一中學2025屆高考英語試題(英語試題)預測押題密卷I卷(全國1卷)含解析
- 音樂情緒識別技術(shù)-深度研究
- 北師大版五年級數(shù)學下冊第七單元用方程解決問題單元檢測(含答案)
- 全國職業(yè)院校技能大賽高職組(商務(wù)數(shù)據(jù)分析賽項)備賽試題庫(含答案)
- 2025年江西贛州城投工程管理有限公司招聘筆試參考題庫含答案解析
- 《中華人民共和國職業(yè)分類大典》(2022年版)各行業(yè)職業(yè)表格統(tǒng)計版(含數(shù)字職業(yè))
- 數(shù)字孿生數(shù)據(jù)映射機制-深度研究
- 《藥學綜合知識與技能》課件-過敏性鼻炎的自我藥療與用藥指導
- 加溫毯預防術(shù)中低體溫
評論
0/150
提交評論