




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
18.4整數(shù)指數(shù)冪
(課時(shí)1)第十八章分式人教版(2024)素養(yǎng)目標(biāo)1.探索負(fù)整數(shù)指數(shù)冪的意義,掌握整數(shù)指數(shù)冪的運(yùn)算性質(zhì);2.能熟練運(yùn)用整數(shù)指數(shù)冪的運(yùn)算性質(zhì)進(jìn)行計(jì)算.隨著我們認(rèn)識(shí)的數(shù)的范圍不斷擴(kuò)大,數(shù)的運(yùn)算也在不斷推廣.例如,加法運(yùn)算從非負(fù)整數(shù)范圍推廣到非負(fù)有理數(shù)范圍,再到有理數(shù)范圍.同樣地,對(duì)于冪的運(yùn)算a,
是否也可以從正整數(shù)指數(shù)冪推廣到更大的范圍呢?新知導(dǎo)入■溯源冪的符號(hào)的演變經(jīng)歷了漫長(zhǎng)的時(shí)間,
a2,a3,a?的一些表示如圖所示:Aq,Acu,Aqq哈里奧特(Harriot,1560
1621)a2,a3,a?韋達(dá)(Vietè,1540—1603)16世紀(jì)3世紀(jì)丟番圖笛卡兒1637年△'△aaa,
aaa,
aaaa,
K'
,17世紀(jì)探究新知1676年,牛頓提出了一個(gè)設(shè)想:“因?yàn)閿?shù)學(xué)家將aa,aaa,aaaa,…,寫成a2,a3,a?.…,
所以我將1,1,1,
…
,
寫
成a1,a2,a33...”a
aaaaa【思考】你認(rèn)為牛頓的這個(gè)設(shè)想合理嗎?即,如果am中的m可以是負(fù)整數(shù),那么負(fù)整數(shù)指數(shù)冪am表示什么?把正整數(shù)指數(shù)冪的運(yùn)算性質(zhì)am÷a"=am-n(a≠0,m,n
都是正整數(shù)
,m>n)中的條件m>n去掉,即假設(shè)這個(gè)性質(zhì)對(duì)于像a3÷a?的情形也能使用,則有a3÷a?=a3-5=a-2探究新知由分式的約分可知,當(dāng)a≠0
時(shí)
,由上面兩式,如果規(guī)定
,就能使am÷a"=am-n這條性質(zhì)也適用于像a3÷a?這樣的情形.am÷a"=am-n(a≠0,m,n
是正整數(shù))
.可以m>n;可以m=n;可以m<n.探究新知a3÷a?=a3-5=a-2負(fù)整數(shù)指數(shù)冪的意義a-n(a≠0)
屬
于分式這
就
是
說(shuō)
,a-n(a≠0)是
a”的倒數(shù)
.一般地,當(dāng)
n
是正整數(shù)時(shí),歸納總結(jié)探究新知引入負(fù)整數(shù)指數(shù)冪后,指數(shù)的取值范圍就擴(kuò)充到全體整數(shù).【思考】引入負(fù)整數(shù)指數(shù)和0指數(shù)后,正整數(shù)指數(shù)冪的運(yùn)算性質(zhì)am·an=am+n(m,n
是正整數(shù))能否推廣到m,n是任意整數(shù)的情形?【總結(jié)】一般地,am
·a"=am+n這條性質(zhì)對(duì)于m、n
是任意整數(shù)的情形仍然適用.a?3oa??ca(-3)+(-5)a?oa??ca?+(-5)a3oa??ca3+(-5)探究新知探究新知事實(shí)上,隨著指數(shù)的取值范圍由正整數(shù)推廣到全體整數(shù),這些運(yùn)算性質(zhì)也推廣到整數(shù)指數(shù)冪.整數(shù)指數(shù)冪的運(yùn)算性質(zhì):
(am)"=amn(m,n
是整數(shù));(ab)”=ab”(n
是整數(shù));am÷a"=am-n(a≠0,m,n是整數(shù));
是
整
數(shù)
)
;am"·a"=am+n(m,n是
整
數(shù)
)
;例題練習(xí)計(jì)
算
:
(
1
)a-2÷a5
(2) (3)(a1b33(4)a“bo(a2b“).(4)a?2b2·(a2b-2)?3=a?2b2.解:(1)(2)根據(jù)整數(shù)指數(shù)冪的運(yùn)算性質(zhì),當(dāng)m,n
為整數(shù)時(shí),am÷an=am-n,am·a-n=am+(-n)=am-n,因
此am÷a"=am
·a-n即同底數(shù)冪的除法am÷a”可以轉(zhuǎn)化為同底數(shù)冪的乘法am
·a-n探究新知D一b即商的乘方
可以轉(zhuǎn)化為積的乘方(aob?1)”.特別地
,所以探究新知■練
習(xí)
1
若
(x-1°+(2x-3)2
有意義,那么x
的取值范圍是(D)A.x≠0
B.x≠1
C.
解析:由題意得,x-1≠0,2x-3≠0,
即x≠1且
x≠
故選:D.
練
習(xí)
2
下列計(jì)算正確的是(D
)A.(-1)?=-1B.(-1)?1=1
D
解
析
:A、(-1)°=1,故本選項(xiàng)不符合題意;B
、(-1)?1=-1,
故本選項(xiàng)不符合題意;,故本選項(xiàng)不符合題意;故本選項(xiàng)符合題意,故選:
D.解
析
:A、
當(dāng)a≠0時(shí),有a?=1,
故
A錯(cuò)
誤
;B、x?÷x2=x2,故
B錯(cuò)
誤
;
,故C
錯(cuò)
誤
;D
、
,故D
正確.故選:D.X練
習(xí)
3下列各式計(jì)算正確的是(D
)A.a?=1
B.x?÷x2=x?D練
習(xí)
4若
,則
a,b,c,d
的大小關(guān)系為(A
)A.d>c>a>b
B.d>a>c>bC.a>b>c>dD.c>b>a>d解析
因力0A.a<b<d<c
B.a<b<c<dC.b<a<d<cD.a<c<b<d,所以a<b<d<c.故選A.練習(xí)5
若a=-22,b=2-2,解析。因力a=2,
則(A
)練
習(xí)
6計(jì)算.
(1)解(1)舊(2)原式[(2-a)(2+a)]=3(2-a)+(a+2)=6-3a+a+2=8-2a.練習(xí)7計(jì)算:(1)x?÷x3·x?;
(2)x?-(x2x3);
(4)
角解(1)原式一
(2)原式=x?÷(3)原式
=m1?÷m?·m1=m1?-0+(-1)=m1?(
4
)
原
式
=(
-xy)?3÷(xy)??=-(xy)-3+?=-xy.(2)(m2)3÷m?;(4)(-mn)?÷(-mn)?3.(2)原式
(4)原式=(-mn)?-(-3)=(-mn)?=m?n?
.練習(xí)8計(jì)算:(1)x2÷x?;(3)y?2÷y°·y?;解:(1)原式=x2-(-5)=x?(
3
)
原0整數(shù)指數(shù)冪
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年河北省退役軍人事務(wù)廳下屬事業(yè)單位招聘考試筆試試題【答案】
- 2025年農(nóng)商銀行反洗錢知識(shí)競(jìng)賽培訓(xùn)考試試題【答案】
- 項(xiàng)目日常管理制度
- 消防自然災(zāi)害應(yīng)急救援預(yù)案
- 領(lǐng)導(dǎo)干部學(xué)習(xí)黨的.教育實(shí)踐活動(dòng)心得體會(huì)
- 2025年涂鍍產(chǎn)品:鍍鋁鋅合作協(xié)議書(shū)
- 消防員辭職保證書(shū)
- 翔隆花園人貨梯專項(xiàng)方案
- 湘藝版四年級(jí)上冊(cè)音樂(lè)《卓瑪》教案 (一)
- 2025年汽車內(nèi)外飾件合作協(xié)議書(shū)
- DB31/T 560-2011道路清掃保潔作業(yè)道班房設(shè)置和設(shè)計(jì)要求
- 2025-2030廢電池回收產(chǎn)業(yè)發(fā)展分析及發(fā)展趨勢(shì)與投資前景預(yù)測(cè)報(bào)告
- 2026屆高職單招考試大綱英語(yǔ)詞匯(音標(biāo)版)
- 中小學(xué)辦學(xué)思想凝練的主要路徑
- 危險(xiǎn)性較大的分部分項(xiàng)工程專項(xiàng)施工方案嚴(yán)重缺陷清單(試行)2025解讀
- 2024執(zhí)業(yè)獸醫(yī)資格證考試真題及答案
- 鼠標(biāo)操作測(cè)試題及答案
- 2023年福建省松溪縣事業(yè)單位公開(kāi)招聘輔警35名筆試題帶答案
- 浙江國(guó)企招聘2025紹興市鏡湖開(kāi)發(fā)集團(tuán)有限公司下屬國(guó)企招聘11人筆試參考題庫(kù)附帶答案詳解
- 店鋪轉(zhuǎn)讓帶技術(shù)合同協(xié)議
- 2025年第九屆“學(xué)憲法、講憲法”活動(dòng)知識(shí)競(jìng)賽測(cè)試題庫(kù)及答案
評(píng)論
0/150
提交評(píng)論