




版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
Presenters:ZhaoHui,YangGuoxingTianjinLightIndustryVocationalTechnicalCollege1.UnderstandingSlopeandTaperImportDirectoryConceptofSlopeDrawingandLabelingSlope12UnderstandingSlopeandTaperConceptofTaper3DrawingandLabelingTaper4ConceptofSlopeS=tanβ=(H-h)/LUsually,theantecedentoftheratioisreducedto1,andtheslopeisexpressedintheformofasimplefraction1:n.MethodofDrawingSlope1:5BCCHENWPBCCHENWPSlopeExampleDrawingSteps①Drawtheknownstraightsectionsbasedonthegivendimensionsinthediagram.②FrompointA,constructaright-angledtriangleata1:12slope,thendeterminethehypotenuseAC.③FromthegivenpointD,drawalineparalleltoAC.④Darkenandthickenthewedgekeyoutline,thenmarktheslopesymbol.Thebottomlineoftheslopesymbolshouldbeparalleltothereferencesurface(line),andthedirectionofthesymbol'stipshouldbeconsistentwiththeinclinationdirectionoftheslope.DrawingoftheSlopeSymbol.ConceptofTaperC=(D-d)/L=2tan(α/2)Liketherepresentationofslope,theantecedentofthetaperratioisusuallyreducedto1andwrittenintheformof1:n.TaperExampleLatheCenterToolShankMethodofDrawingTaperTakehalfofthetaperintheverticaldirection1:4TaperExampleDrawthegraphicwitha1:5taperasshowninthetaperaxisDrawingSteps①Accordingtothedimensionsinthedrawing,drawtheknownstraightlinesection.②ArbitrarilydeterminethebaseABoftheisoscelestriangleas1unitlengthandtheheightas5unitlengths,anddrawtheisoscelestriangleABC.③FromtheknownpointsDandE,drawlinesparalleltoACandBCrespectively.④Darkenandthickenthegraphicandlabelthetapersymbol.SummaryConceptualDifferenceBetweenSlopeandTaperDrawingMethodsofSlopeandTaper12UnderstandingSlopeandTaperFutureCareerApplicationWhyarebulletsmadetapered?Inourfuturework,weshouldcombinepracticalworkwithmorethinkingandreflection.Onlybythinkingdiligentlycanwecontinuetoprogress.Whatisthetaperofthetoolholderinamachiningcenter?PracticeTaskPresenters:ZhaoHui,YangGuoxingTianjinLightIndustryVocationalTechnicalCollege2.ArcConnectionIntroductionIntroductionContentsConceptofarcconnectionTypesofarcconnection12ArcconnectionDrawingmethodofarcconnection3ConceptofarcconnectionArcconnectionisadraftingmethodthatemploysatangentarctosmoothlyjointwoadjacentsegments(linesorarcs)withoutabrupttransitions.Essenceofarcconnection:thearcistangenttothestraightline,andthearcistangenttothearc.SmoothTypesofarcconnectionSelectanypointonL1orL2ascenterO;anarcdrawnwithradiusRwillbetangenttolineL.
ConclusionArctangenttoaknownstraightline01TypesofarcconnectionTakeanypointontheconcentriccircleasthecenterO,anddrawanarcwithradiusR.Thearcistangenttotheknownarc.KConclusionArctangenttoaknownarcexternally02TypesofarcconnectionTakeanypointontheconcentriccircleasthecenterO,anddrawanarcwithradiusR.Thearcistangenttotheknownarc.ConclusionKArctangenttoaknownarcinternally03DrawingmethodofarcconnectionKnownradiusFixedcenterFindtangentpointConnectarcDrawingmethodofarcconnectionoRRBK2K1ORRRSpecialmethodofarcconnectingtwostraightlinesatarightangleMethodofarcconnectingtwostraightlinesatanyangleArctangenttoaknownstraightline01DrawingmethodofarcconnectionRa=R1+RRb=R2+RRMethod:Thecenterliesattheintersectionofarcswithradii(R+R1)and(R+R2).Arctangenttotwoknownarcsexternally02DrawingmethodofarcconnectionRa=R-R1Rb=R-R2Method:findthecenterbythedifferenceofthetwointernaltangentradiiArctangenttotwoknownarcsinternally03DrawingmethodofarcconnectionRT1T2OR+R1R+R2R1O1O2R2RR2O2R1O1R-R1R-R2T2T1RORSummaryConceptandtypesofarcconnectionDrawingmethodofarcconnection12ArcconnectionPracticeTask主講人:趙慧、楊國(guó)星TianjinLightIndustryVocationalTechnicalCollege3.DrawingtheThree-ViewProjectionofaStraightLinePartIIn-ClassReviewPARTIIn-ClassReviewI.Three-ViewProjectionofaStraightLineDefinition:Astraightlineisdeterminedbytwopoints.Byconnectingthecorrespondingprojectionsofthesetwopointswithastraightlineineachview,weobtainthecorrespondingprojectionofthestraightline.aa
a
b
b
b●●●●●●In-ClassReviewII.ProjectionCharacteristicsofaStraightLineonaSingleProjectionPlaneAB●●●●abStraightlineperpendiculartotheprojectionplane:theprojectioncoincidesintoasinglepoint(AccumulationProperty)Straightlineparalleltotheprojectionplane:theprojectionreflectsthetruelengthofthesegmentab=AB(True-Length
Property)Straightlineinclinedtotheprojectionplane:theprojectionisshorterthanthespatialsegmentab=ABcosα(Similarity
Property).●●AB●●abαAMB●a≡b≡m●●●In-ClassReviewIII.ProjectioncharacteristicsofastraightlineinthesystemofthreeprojectionplanesProjection-plane-parallel
linesProjection-plane-perpendicular
lines
frontalline—paralleltotheV-planeprofileline—paralleltotheW-planehorizontalline—paralleltotheH-planefrontalperpendicularline—perpendiculartotheV-planeprofileperpendicularline—perpendiculartotheW-planeVerticalline—perpendiculartotheH-planeGeneral‐positionstraightlinecollectivelyreferredtoasspecial-positionlinesStraightlineinclinedtoallthreeprojectionplanesPerpendiculartooneprojectionplanewhileparalleltotheothertwoprojectionplanes.Parallel
tooneprojectionplaneandInclinedtotheothertwoprojectionplanes.PartIIProjection-planeperpendicular
linesPARTIIProjection-planeperpendicular
linesProjection-planeperpendicular
lines(⊥,∥,∥)1.Verticalline(⊥totheH-plane,∥totheV-plane,∥totheW-plane)b'b"a"BA0WHVXZb(a)a
b
b(a)a''b
ZXYWYHa'Projection-planeperpendicular
linesProjection-planeperpendicular
lines(⊥,∥,∥)2.
Frontalperpendicularline(⊥totheV-plane,∥
totheH-plane,∥
totheW-plane)a'(b')b"a"BA0WHVXZYabXZYH0abb"a"a'(b')Projection-planeperpendicular
linesProjection-planeperpendicular
lines(⊥,∥,∥)3.
Profileperpendicularline(⊥totheW-plane,∥totheV-plane,∥totheH-plane)a"(b")Wa'BA0HVXZb'abYWZYH0aba"(b")a'b'XYProjection-planeperpendicular
linesProjection-planeperpendicular
lines(⊥,∥,∥)Projectioncharacteristics:(1)Onitsperpendicularprojectionplane,
theprojectionconvergesintoapoint.(2)Theprojectionsontheothertwoplanes,
reflecttheactuallengthofthesegmentandareperpendiculartothecorrespondingprojectionaxes.a
b
a(b)a''b
ZXYWYHb'(a)'baa
b
ZXYWYHa'b'aba''(b
)ZXYWYHIdentificationmethod:"Onepoint,two
lines"–theprojectionthatisapointononeprojectionplaneindicatesitisperpendiculartothatprojectionplane.ProfileperpendicularlineFrontalperpendicularlineVerticallinePartIIIProjection-planeParallelLinesPARTIIIProjection-planeParallelLines(1)HorizontalLine(∥Hplane,∠Vplane,∠Wplane)
Projection-planeParallelLines(∥,∠,∠))truelengthba''aa
b'b''ZXYHYWβγXZYOaa
b
a
bb
ABβγγβProjection-planeParallelLines(2)FrontalParallelLine(∥Vplane,∠H
plane,∠W
plane)Projection-planeParallelLines(∥,∠,∠)truelengthαγααXb"b'ba'a"aoZHWVABXaboa'b'ZYHb"a"YWYγγααProjection-planeParallelLines(3)ProfileLine(∥W
plane,∠V
plane,∠H
plane)Projection-planeParallelLines(∥,∠,∠))truelengthXaba'b'ZYHb"a"YWob"b'ba'a"aZHWVABXYoαααβββProjection-planeParallelLinesProjection-planeParallelLines(∥,∠,∠)Projectioncharacteristics:Ontheprojectionplanetowhichthelineisparallel,itsprojectionshowsthesegment’struelengthandthetruemagnitudeoftheanglesbetweenthelineandtheothertwoprojectionplanes.
Ontheothertwoprojectionplanes,theprojectionsareparalleltotherespectiveprojectionaxes.Identificationmethod:“oneinclined,two
parallel”—theprojectionthatappearsinclinedonagivenprojectionplaneindicatesthatthelineisparalleltothatprojectionplane.b
a
aba
b
b
aa
b
ba
γAnglewiththeH-plane:α;anglewiththeV-plane:β;anglewiththeW-plane:γβγααβba
aa
b
b
HorizontallineFrontalparallellineProfileparallellinetruelengthtruelengthtruelengthProjection-planeParallelLinesProjection-planeParallelLines(∥,∠,∠)ProjectionCharacteristics:(1)Ontheprojectionplanetowhichthelineisperpendicular,projectionconvergestoapoint(i.e.,exhibitsconvergence).(2)Ontheothertwoprojectionplanes,theprojectionsrepresentthetruelengthofthelinesegmentandareperpendiculartotheirrespectiveprojectionaxes.a
b
a(b)a''b
ZXYWYHb'(a)'baa
b
ZXYWYHa'b'aba''(b
)ZXYWYHIdentificationMethod:"Onepoint,two
lines"—Theplaneonwhichtheprojectionappearsasapointindicatesthatthelineisperpendiculartothatprojectionplane.ProfileperpendicularLineFrontalperpendicularlineVerticalline?PartIVLineinGeneralPositionPARTIVLineinGeneralPositionLineinGeneralPosition(∠,∠,∠)OXZYABbb
a
b
aa
ZXa
b''aOYHYWa
bb
Allprojectionsonthethreeprincipalplanesareinclinedstraightlines,andallofthemareshorterthanthetruelength.ProjectionCharacteristics:IdentificationMethod:"TripleInclination".PartVKnowledge
ReinforcementPARTVKnowledge
ReinforcementDeterminethepositionaltypeofeachofthefollowinglines:GeneralPositionLineFrontalParallelLineVerticalLine?true
lengthb
a
aba
b
ZXYWYHYHYWXZZXYWYHa
b
a(b)a
b
a
b
abb
a
SummaryofThisLecture0102ClassificationoftheProjectionsofaStraightLineProjectionCharacteristicsofaStraightLineintheThree-PlaneProjectionSystem03HowtoDeterminetheSpatialOrientationofaStraightLineThoughtQuestionsLineACisa(n)
line.LineSBisa(n)
line.LineSAisa(n)
line.DeterminingtheRelativePositionsofEachEdgeofaTriangularPyramidtotheProjectionPlanesSpeakers:ZhaoHui,YangGuoxingTianjinLightIndustryVocationalTechnicalCollege4.DrawingtheThree-ViewProjectionofaSphereSphere
k
k
kCircle’sRadius?Thecirculargeneratrixisrotatedaboutitsdiameter,whichservesastheaxisofrotation.Thethreeviewsarethreecircleswithadiameterequaltothatofthesphere,whicharetheprojectionsofthesphere’scontourlinesinthreedirections.FormationoftheSphericalSurfaceProjectionoftheSphere(ThreeViews)SelectingPointsontheSphere’sSurfaceAuxiliaryCircleMethodIntersectionLineofSphereWhenaplaneintersectsasphere,theintersectionlineisalwaysacircle.Dependingontherelativepositionbetweenthecuttingplaneandtheprojectionplane,
theprojectionoftheintersectionlinemaybeacircle,anellipse,orastraightline.IntersectionLineofSphereForthetheprojectionsoftheintersectionlinesgeneratedbyahorizontalplanecuttingthesphere:Inthetopview,theprojectionappearsasapartialcirculararc;Intheleftview,itconvergesintoastraightline.Forthetheprojectionsoftheintersectionlinesgeneratedbytwosideplanescuttingthesphere:Intheleftview,theprojectionappearsaspartialcirculararcs;Inthetopview,itconvergesintoastraightline.ExampleDeterminethetopviewandleftviewofahemisphereafterbeingcut.ExampleDeterminetheplanviewandleftviewofahemisphereafterbeingcut.Exercise:Speakers:ZhaoHui,YangGuoxingTianjinLightIndustryVocationalTechnicalCollege5.DrawingtheThree-ViewProjectionofaCylinderCylinder
CommonBasicGeometricSolidsPlaneSolidsCurvedSolidsCylinderAnylineonthecylindricalsurfacethatisparalleltotheaxisiscalled
aprofileline.Acylinderisasolidboundedby
acylindricalsurfaceandtwocircularbases.AcylindricalsurfacecanberegardedasalineAA1rotatingaboutalineOO1thatisparalleltoit.ThelineAA1iscalledthegeneratrix.A1AOO1FormationoftheCylindricalSurface:CylinderStepsforDrawingtheThree-ViewProjectionofaCylinder
A1AOO1SelectingPointsontheCylindricalSurfaceA1AOO1Utilizingtheaccumulationofprojections.Giventheprojections(1′,2′,3′,4)ofpointsonthecylindricalsurface,determinetheirprojectionsintheothertwoviews.Cylinder
3
3
1′
1
4"
(2
)
2"
2
4
4
1"KnowledgeExplanationIntersectionLine:thelineformedbytheintersectionofaplanewiththesurfaceofasolid.Theplaneiscalledthecuttingplane,andtheresultingsolidisknownasasectionedsolid.
Duetothedifferentrelativepositionsbetweenthecuttingplaneandthecylinder’saxis,theintersectionlinecantakeonthreedifferentshapes:CircleEllipseRectanglePerpendicularInclinedParallelCylinderCutbyaPlaneKnowledgeExplanation(1)SpatialandProjectionAnalysisAnalyzetheshapeofthesolidofrevolutionandtherelativepositionbetweenthecuttingplaneandthesolid’saxis.Analyzetherelativepositionbetweenthecuttingplaneandtheprojectionplanes(e.g.,accumulation,similarity).Identifytheknownprojectionoftheintersectionlineandpredictitsunknownprojection.(2)DrawtheProjectionoftheIntersectionLineWhentheintersectionline’sprojectionisanon-circularcurve,followthesesteps:Smoothlyconnectallpointsandevaluatethe
visibility
oftheintersectionline.Locatethespecialpoints(pointsontheoutlineprofilelineandatextremepositions).Determinetheshapeoftheintersectionline.DeterminetheprojectioncharacteristicsoftheintersectionlineAddthegeneralpoints.(3)RefinetheOutline.StepstoDeterminetheIntersectionLine:ExampleAcylinderisobliquelycutbyaverticalplane;determineitsthree-viewprojection.Whatistheshapeofthesideprojectionoftheintersectionline?Whatistheknownprojectionoftheintersectionline?Whatistherelationshipbetweenthecuttingplaneandthecylinder’saxis?(1)Analysis:★L(fēng)ocatethespecialpoints.★Addthegeneralpoints.★Smoothlyconnectallpoints.(3)RefinetheOutline(2)DeterminetheIntersectionLine:●5●6●8●71●3●2●4●●1'●2'(4')●3'●1"●2"●3"●4"●5'(6')●7'(8')●5"●7"●8"●6"ResultsandtheSolidDiagram●1'●2'(4')●3'●1"●3"●4"●5'(6')●7'(8')●5"●8"●6"●5●6●8●71●3●2●4●●1●3●4●2Completethehorizontalandsideprojectionsofthecylinder’scutsection.ExerciseSpeakers:ZhaoHui,YangGuoxingTianjinLightIndustryVocationalTechnicalCollege6.DrawingtheThree-ViewProjectionofaConeConceptsofaConeandItsThree-ViewProjectionO1ONotetheprojectionoftheoutlineprofilelineandtheevaluationofthesurface’svisibility.SAAconeisasolidboundedby
aconicalsurfaceandacircularbase.ConesFormationoftheConicalSurfaceTheconicalsurfaceisformedbyrotatinglineSA(thegeneratrix)aboutitsintersectinglineOO1.ApexProfileLineThree-ViewProjectionoftheConeStepsforDrawingtheThree-ViewProjectionofaConeO1OSA
s
s
sacbda
c
b
(d
)d
b
a
(
c
)SelectingPointsontheConesO1OSAGiventheProjection1、2、3,ontheconicalsurface,determineitsprojectionsintheothertwoviews.
s
s
(2
)
sacbda
c
b
(d
)d
b
a
(
c
)
1
1
1
2
2
(3)
3
3
SpecialPositionPointsSelectingPointsontheConicalSurfaceHowcanyouconstructastraightlineontheconicalsurface?Giventheprojections
1、2ofapointontheconicalsurface,determineitsprojectionsintheothertwoviews.GeneralPointsAuxiliaryProfileLineMethod:AuxiliaryCircleMethod:Drawanauxiliaryprofilelinethroughtheapex.●SM
s
●
s
●
1
(2
)s●2
1(2
)●
1
m
mPlaneCuttingaConeWhenthecuttingplaneisinclinedrelativetotheaxisθ>αEllipseCircleWhenthecuttingplaneisperpendiculartotheaxisθ=90°HyperbolaWhenthecuttingplaneisparalleltotheaxisθ=0°ParabolaWhenthecuttingplaneisparalleltooneprofilelineθ=αIsoscelestriangleWhenthecuttingplanepassesthroughtheapexWhatisthespatialshapeoftheintersectionline?Whatistheknownprojectionoftheintersectionline?Whatistherelationshipbetweenthecuttingplaneandthecone’saxis?★L(fēng)ocatethespecialpointsHowtolocatetheendpointsoftheotheraxisoftheellipse(i.e.,theforemostandrearmostpoints):★Addtheintermediatepoints.★Smoothlyconnectallpoints3.RefinetheOutline1.Analysis2.DeterminingtheIntersectionLine1'2'3‘(4’)5'(6')1"2"3"4"127‘(8')9‘(10')7"8"??5"6"??9"10"??78??910??43??56??AConeCutbyaVerticalPlane–CompletingtheThree-ViewProjectionPlaneCuttingaConeThree-viewprojectionandsoliddiagramofaconecutbyaverticalplane.1'2'3‘(4’)5'(6')7‘(8')9‘(10')7"8"??5"6"??9"10"??78??910??43??56??212"1"ExercisePresenters:ZhaoHui,YangGuoxingTianjinLightIndustryVocationalTechnicalCollege7.DrawthethreeviewsofaregularprismCommonBasicGeometricBodiesBasicplanarsolidBasiccurvedsolidCaseIntroductionGeometricsolidPlanarsolidCurvedsolidThosewithallsurfacesbeingflatarecalledplanarsolidsThosewithcurvedsurfacesarecalledcurvedsolidsCuttingbodyofaregularhexagonalpyramidCuttingbodyofaregularquadrangularprismDrawingviewsofplanarsolidsDrawprojectionsofalledges(oredgefaces),andrepresentthemwiththicksolidlinesordashedlinesbasedontheirvisibility.Edge:Thelineofintersectionbetweenadjacentsurfacesonasolid.ProjectionofplanarsolidsandtheirintersectionlinesArightprismwithtopandbottomfacesasregularpolygonsiscalledaregularprism.Boththetopandbottomfaceslieonhorizontalplanes,withtheirhorizontalprojectionsexhibitingcongruence.Thefrontandbackfacesarefrontalplanes,andtheotherfourfacesareverticalplanes;theirhorizontalprojectionsallaccumulateintolines,coincidingwiththesidesofthehexagon.I.Prism(1)ThreeviewsofaprismStepsfordrawingthreeviewsofaprismProjectioncharacteristicsofaprism:Projectiononaplaneparalleltothecharacteristicfaceisapolygon;TheothertwoprojectionsareseveralrectanglesStepsfordrawingthreeviewsofaprism(2)TakingpointsonthesurfaceofaprismVisibilityrulesforpoints:Iftheprojectionoftheplanewherethepointislocatedisvisible,theprojectionofthepointisalsovisible;Iftheprojectionoftheplaneaccumulatesintoaline,theprojectionofthepointisalsovisible.
a
a
a
(b)
b
b
cCCC
DrawthethreeviewsofaregularprismTheintersectionlineformedonthesurfaceofasolidwhenaplanecutsthroughitiscalledtheintersectionline.Theplanethatcutsthroughthesolidiscalledthecuttingplane.Thesolidthathasbeencutbytheplaneiscalledthetruncatedsolid.Propertiesoftheintersectionline:Theintersectionlinerepresentsthesharedboundarybetweenthetruncatingplaneandthesolid'ssurface.Theintersectionlineisaclosedplanefigure.IntersectionlineofaplanesolidAplanarsolidundergoestruncation,theintersectionlineisaclosedplanepolygon.Theverticesoftheresultingpolygoncorrespondtotheintersectionpointsbetweenthecuttingplaneandtheedgesofthesolidobject.Thecuttinglineisobtainedbycomputingeithertheintersectionpointsofedgeswiththecuttingplaneortheintersectionlinesoffaceswiththecuttingplane.Eachsideofthesectionpolygonrepresentstheexactintersectionlocuswherethecuttingplaneintersectswithaspecificfaceofthethree-dimensionalsolid.Exampleanalysisa'aa"b'bb"c(c')c"d'(e')dee"d"Pv1FindtheintersectionpointsoftheedgeswithplaneP.2Connectthepoints—connectpointsonthesamesurface.Findtheintersectionlineafteraquadrangularprismiscut.Three-viewprojectionPracticeTaskCompletethetopandsideviewsofthehexagonalprismafterithasbeencut.1(3)2(4)1
(2
)2"●1"●3
(4
)主講人:趙慧、楊國(guó)星TianjinLightIndustryVocationalTechnicalCollege8.DrawingtheThree-ViewProjectionofaRegularPrismPyramid(1)TheThreeViewsofaPyramidAsolidformedbyabaseandseverallateralfaces.Thelateraledgesconvergeatasinglepointatafinitedistance—theapex.Tofacilitatetheanalysisoflinesandsurfacesintheviews,theprojectionsofeachvertexmaybelabeled.Pyramid
s
b
s
a
c
abc
a
(c
)b
s
yyStepsforDrawingtheThree-ViewProjectionofaPyramid:Giventhehorizontal
projection“a”ofpointAonthepyramid’ssurface,determineitsprojectionsontheothertwoviews.(2)SelectingPointsonthePyramid’sSurfacea(a′)(a″)PyramidSectionedTriangularPyramidThinkingFindthetopviewandtheleftviewofthequadrangularpyramidafterithasbeencut.3
2
1
(4
)1
?1?3
?2
?4
?3?2?4?主講人:趙慧、楊國(guó)星TianjinLightIndustryVocationalTechnicalCollege9.DrawaStandardIsometricDrawingPartIIntroductionPARTIIntroduction1810162582036Canyouunderstandthissetofthree-viewdrawingsandmentallyvisualizeitsthree-dimensionalshape?Introduction1810162582036StandardIsometric
DrawingAdvantagesItallowsyoutoclearlyexpressthethree-dimensionalshapeyouhaveconceptualizedbasedonthethreeviews;Itenablescomparisonwiththethree-viewdrawings,helpingyoutocorrectanyerrorsinyourconstructed3Dimage;Forslightlymorecomplexthree-viewdrawings,youcanobserve,imagine,andsketchtheisometricdrawingsimultaneously.PARTIIFormationofAxonometricProjectionPARTIIFormationofAxonometric
ProjectionVHYAnobjectprojectsontothehorizontalprojectionplane,formingthetopviewACBZXOAnobjectprojectsontothefrontalprojectionplane,formingthefrontviewFormationofAxonometricProjectionVHPYDrawingAxonometricProjectionsIntroducetheinclinedplaneaxonometricprojectionplaneACBZXOYZ1Y1X1C1B1A1ThefigureobtainedbyprojectingtheobjecttogetherwiththeCartesiancoordinatesystemontothisprojectionplaneusingparallelprojectionaxonometricprojectionThefigureobtainedwhentheprojectiondirectionisperpendiculartotheaxonometricprojectionplaneisometric
drawingSAxonometricProjectionPlaneAxonometricProjectionDirectionIsometric
DrawingO1FormationofAxonometric
ProjectionVHPYACBZXOYZ1Y1
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 市級(jí)語(yǔ)文教研組年度工作計(jì)劃
- 新外研版五年級(jí)上冊(cè)英語(yǔ)學(xué)習(xí)反饋計(jì)劃
- 工業(yè)車間離心式排風(fēng)機(jī)施工方案及技術(shù)措施
- 交通運(yùn)輸質(zhì)量保證技術(shù)措施
- 七年級(jí)英語(yǔ)下冊(cè)作文范例與解析范文
- 荒山造林項(xiàng)目施工安全質(zhì)量保證措施
- 幼兒園教科研工作績(jī)效考核計(jì)劃
- 綠色護(hù)理服務(wù)推廣計(jì)劃
- 部編版二年級(jí)下冊(cè)語(yǔ)文園地四寫話思維訓(xùn)練范文
- 小學(xué)班主任學(xué)科教學(xué)培訓(xùn)心得體會(huì)他
- 《計(jì)算機(jī)圖形學(xué)》課后習(xí)題參考答案
- 初三第一學(xué)期家長(zhǎng)會(huì)
- 2022-2023學(xué)年天津市北辰區(qū)八年級(jí)(下)期末語(yǔ)文試卷
- 位置隨動(dòng)系統(tǒng)的MATLAB計(jì)算及仿真畢業(yè)設(shè)計(jì)說(shuō)明書(shū)
- 辦公樓裝飾裝修工程施工組織設(shè)計(jì)方案
- 勞務(wù)合同保證金合同模板
- 湖南省長(zhǎng)沙市2024年中考語(yǔ)文真題試卷(含答案)
- 污水管網(wǎng)工程竣工驗(yàn)收?qǐng)?bào)告
- DB34∕ 1659-2022住宅工程質(zhì)量常見(jiàn)問(wèn)題防治技術(shù)規(guī)程
- 2023-2024學(xué)年安徽省安慶市高二(下)期末考試物理試卷(含答案)
- 安全文明施工和環(huán)境保護(hù)措施
評(píng)論
0/150
提交評(píng)論