




已閱讀5頁,還剩13頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
運(yùn)籌學(xué) 與最優(yōu)化方法,吳祈宗等編制,主要內(nèi)容,第一章 運(yùn)籌學(xué)思想與運(yùn)籌學(xué)建模 第二章 基本概念和理論基礎(chǔ) 第三章 線性規(guī)劃 第四章 最優(yōu)化搜索算法的結(jié)構(gòu)與一維搜索 第五章 無約束最優(yōu)化方法 第六章 約束最優(yōu)化方法 第七章 目標(biāo)規(guī)劃 第八章 整數(shù)規(guī)劃 第九章 層次分析法 第十章 智能優(yōu)化計算簡介,第 一 章,運(yùn)籌學(xué)思想 與 運(yùn)籌學(xué)建模,第一章 運(yùn)籌學(xué)思想與運(yùn)籌學(xué)建模,運(yùn)籌學(xué)簡稱 OR (美)Operations Research (英)Operational Research “運(yùn)籌于帷幄之中,決勝于千里之外” 三個來源:軍事、管理、經(jīng)濟(jì) 三個組成部分: 運(yùn)用分析理論、競爭理論、隨機(jī)服務(wù)理論,一、什么是運(yùn)籌學(xué),為決策機(jī)構(gòu)在對其控制下的業(yè)務(wù)活動進(jìn)行決策時,提供一門量化為基礎(chǔ)的科學(xué)方法。 或是一門應(yīng)用科學(xué),它廣泛應(yīng)用現(xiàn)有的科學(xué)技術(shù)知識和數(shù)學(xué)方法,解決實際中提出的專門問題,為決策者選擇最優(yōu)決策提供定量依據(jù)。 運(yùn)籌學(xué)是一種給出問題壞的答案的藝術(shù),否則的話,問題的結(jié)果會更壞。,二、運(yùn)籌學(xué)的應(yīng)用原則,合伙原則:應(yīng)善于同各有關(guān)人員合作 催化原則:善于引導(dǎo)人們改變一些常規(guī)看法 互相滲透原則:多部門彼此滲透地考慮 獨立原則:不應(yīng)受某些特殊情況所左右 寬容原則:思路寬、方法多,不局限在某一特定方法上 平衡原則:考慮各種矛盾的平衡、關(guān)系的平衡,三、運(yùn)籌學(xué)解決問題的工作步驟,1 )提出問題:目標(biāo)、約束、決策變量、參數(shù) 2 )建立模型:變量、參數(shù)、目標(biāo)之間的關(guān)系表示 3 )模型求解:數(shù)學(xué)方法及其他方法 4 )解的檢驗:制定檢驗準(zhǔn)則、討論與現(xiàn)實的一致性 5 )靈敏性分析:參數(shù)擾動對解的影響情況 6 )解的實施:回到實踐中 7 )后評估:考察問題是否得到完滿解決,四、運(yùn)籌學(xué)模型的構(gòu)造思路及評價,直 接 分 析 法 類 比 方 法 模 擬 方 法 數(shù) 據(jù) 分 析 法 試 驗 分 析 法 構(gòu) 想 法 模型評價: 易于理解、易于探查錯誤、易于計算等,優(yōu)化模型的一般形式,Opt. f ( xi, yj, k ) s.t. gh ( xi, yj, k ) , 0 h = 1,2, ,m 其中: xi 為決策變量(可控制) yj 為已知參數(shù) k 為隨機(jī)因素 f , gh 為(一般或廣義)函數(shù) 建模舉例(略) 自看,五、基本概念和符號,1、向量和子空間投影定理 (1) n維歐氏空間:Rn 點(向量):x Rn, x = (x1 ,x2 ,xn)T 分量 xi R (實數(shù)集) 方向(自由向量):d Rn, d 0 d =(d1 ,d2 ,dn)T 表示從0指向d 的方向 實用中,常用 x + d 表示從x 點出發(fā)沿d 方向移動d 長度得到的點,d,0,x,x+(1/2)d,五、基本概念和符號(續(xù)),1、向量和子空間投影定理 (2) 向量運(yùn)算:x , y Rn n x , y 的內(nèi)積:xTy = xiyi = x1y1+ x2y2+ + xnyn i =1 x , y 的距離: x-y = (x-y)T(x-y)(1/2) x 的長度: x= xTx (1/2) 三角不等式: x + y xy 點列的收斂:設(shè)點列x(k) Rn , x Rn 點列x(k)收斂到 x ,記 lim x(k) = x limx(k)- x = 0 lim xi(k) = xi ,i k k k,x+y,y,x,五、基本概念和符號(續(xù)),1、向量和子空間投影定理 (3) 子空間:設(shè) d (1) , d (2) , , d (m) Rn, d (k) 0 m 記 L( d (1) , d (2) , , d (m) )= x = j d (j) jR j =1 為由向量d (1) , d (2) , , d (m) 生成的子空間,簡記為L。 正交子空間:設(shè) L 為Rn的子空間,其正交子空間為 L x Rn xTy=0 , y L 子空間投影定理:設(shè) L 為Rn的子空間。那么 x Rn, 唯一 x L , y L, 使 z=x+y , 且 x 為問題 min z - u s.t. u L 的唯一解,最優(yōu)值為y。 特別, L Rn 時,正交子空間 L 0 (零空間),五、基本概念和符號(續(xù)),規(guī)定:x , y Rn,x y xi yi ,i 類似規(guī)定 x y,x = y,x y . 一個有用的定理 設(shè) xRn,R,L為Rn 的線性子空間, (1)若 xTy , yRn 且 y 0, 則 x 0, 0 . (2)若 xTy , y L Rn , 則 x L, 0 .(特別, LRn時,x =0) 定理的其他形式: “若 xTy , yRn 且 y 0,則 x 0, 0 .” “若 xTy , yRn 且 y 0,則 x 0, 0 .” “若 xTy , yRn 且 y 0,則 x 0, 0 .” “若 xTy , y L Rn , 則 x L, 0 .”,五、基本概念和符號(續(xù)),2、多元函數(shù)及其導(dǎo)數(shù) (1) n元函數(shù):f (x): Rn R 線性函數(shù):f (x) = cTx + b = ci xi + b 二次函數(shù):f (x) = (1/2) xTQx + cTx + b = (1/2)i j aij xi xj + ci xi + b 向量值線性函數(shù):F(x) = Ax + d Rm 其中 A為 mn矩陣,d為m維向量 F(x)=( f1(x), f2(x), , fm(x) )T 記 aiT為A的第i行向量,fi (x) = aiTx,五、基本概念和符號(續(xù)),2、多元函數(shù)及其導(dǎo)數(shù) (2) 梯度(一階偏導(dǎo)數(shù)向量): f (x)( f / x1 , f / x2 , , f / xn )TRn . 線性函數(shù):f (x) = cTx + b , f (x) = c 二次函數(shù):f (x) = (1/2) xTQx + cTx + b f (x) = Qx + c 向量值線性函數(shù):F(x) = Ax + d Rm F / x = AT,五、基本概念和符號(續(xù)),2、多元函數(shù)及其導(dǎo)數(shù) (3) Hesse 陣(二階偏導(dǎo)數(shù)矩陣): 2f /x1 2 2f /x2 x1 2f /xn x1 2f (x)= 2f /x1 x2 2f /x22 2f /xn x2 2f /x1 xn 2f /x2 xn 2f /xn2 線性函數(shù):f (x) = cTx + b , 2f (x) = 0 二次函數(shù):f (x) = (1/2) xTQx + cTx + b, 2f (x)=Q,五、基本概念和符號(續(xù)),2、多元函數(shù)及其導(dǎo)數(shù) (4)n元函數(shù)的Taylor展開式及中值公式: 設(shè) f (x): Rn R ,二階可導(dǎo)。在x* 的鄰域內(nèi) 一階Taylor展開式: f (x) = f (x*)+ f T(x*)(x-x*) + ox-x* 二階Taylor展開式: f (x) = f (x*)+ f T(x)(x-x*) + (1/2)(x-x*)T 2f (x*)(x-x*) + ox-x*2 一階中值公式:對x, , 使 f (x) = f (x*)+ f (x*+(x-x*)T(x-x*) Lagrange余項:對x, , 記xx*+ (x-x*) f
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 火災(zāi)山體滑坡地震應(yīng)急預(yù)案(3篇)
- 軟件設(shè)計師考試自我激勵與提升策略試題及答案
- 逆襲成功的軟件設(shè)計師考試試題及答案
- 企業(yè)網(wǎng)絡(luò)服務(wù)模型試題及答案
- 高考數(shù)學(xué)解析能力提升指南試題及答案
- 2025年網(wǎng)絡(luò)攻防技能試題及答案
- 法學(xué)概論的影響力試題與答案分析
- 面對失敗的成長經(jīng)歷2023年高考作文試題及答案
- 網(wǎng)絡(luò)測量工具試題及答案
- 多媒體技術(shù)在教研中的應(yīng)用計劃
- 2025浙江省樂清蒼南永嘉二模聯(lián)考科學(xué)試題卷
- Java高級軟件開發(fā)面試題及答案
- 3.4 羧酸的衍生物 課件高二下學(xué)期化學(xué)人教版(2019)選擇性必修3
- 2025年消防安全培訓(xùn)考試試卷及完整答案
- 2024年河北省井陘縣事業(yè)單位公開招聘警務(wù)崗筆試題帶答案
- 2025年信息科技與創(chuàng)新能力考核試題及答案
- 2025年智慧城市建設(shè)相關(guān)知識考試試卷及答案
- 2025年4月自考00522英語國家概況答案及評分參考
- 2025年江西南昌初三一模中考語文試卷試題(含答案詳解)
- 2025年吉林省長春市中考一模歷史試題(原卷版+解析版)
- 2025人教版三年級下冊數(shù)學(xué)第七單元達(dá)標(biāo)測試卷(含答案)
評論
0/150
提交評論