




已閱讀5頁,還剩21頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
一、準(zhǔn)則I及第一個(gè)重要極限,二、準(zhǔn)則II及第二個(gè)重要極限,1.6 極限存在準(zhǔn)則 兩個(gè)重要極限,上頁,下頁,鈴,結(jié)束,返回,首頁,2,由條件(2) e 0 N 0 當(dāng)nN 時(shí) 有,一、準(zhǔn)則I及第一個(gè)重要極限,如果數(shù)列xn、yn及zn滿足下列條件 (1) ynxnzn(n=1 2 3 ),準(zhǔn)則 I,|yn-a|e 及|zn-a|e 即有 a-eyna+e a-ezna+e 由條件(1) 有 a-eynxnzna+e 即 |xn-a|e ,簡要證明,下頁,3,一、準(zhǔn)則I及第一個(gè)重要極限,準(zhǔn)則I,如果函數(shù)f(x)、g(x)及h(x)滿足下列條件 (1) g(x)f(x)h(x) (2)lim g(x)A lim h(x)A 那么lim f(x)存在 且lim f(x)A,證明與準(zhǔn)則 I類似,下頁,如果數(shù)列xn、yn及zn滿足下列條件 (1) ynxnzn(n=1 2 3 ),準(zhǔn)則 I,4,第一個(gè)重要極限,因此 sin x x tan x ,簡要證明,參看附圖 設(shè)圓心角AOB=x,下頁,兩邊除以sin x,得,5,注:,這是因?yàn)?令u=a(x) 則u0 于是,下頁,(2),第一個(gè)重要極限,6,例2,解,解,例3,下頁,7,例4,解,下頁,8,思考:,1.公式計(jì)算,2.幾何理解,下頁,9,二、準(zhǔn)則II及第二個(gè)重要極限,注:,如果xnxn+1 nN 就稱數(shù)列xn是單調(diào)增加的 如果xnxn+1 nN 就稱數(shù)列xn是單調(diào)減少的 單調(diào)增加和單調(diào)減少數(shù)列統(tǒng)稱為單調(diào)數(shù)列,下頁,準(zhǔn)則II 單調(diào)有界數(shù)列必有極限,討論: 收斂的數(shù)列是否一定有界? 有界的數(shù)列是否一定收斂?,10,二、準(zhǔn)則II及第二個(gè)重要極限,準(zhǔn)則II 單調(diào)有界數(shù)列必有極限,準(zhǔn)則II的幾何解釋,以單調(diào)增加數(shù)列為例,下頁,數(shù)列的點(diǎn)只可能向右一個(gè)方向移動(dòng) 或者無限向右移動(dòng) 或者無限趨近于某一定點(diǎn)A 而對有界數(shù)列只可能無限趨近于某一定點(diǎn)A ,11,例5,證,(舍去),12,根據(jù)準(zhǔn)則II 數(shù)列xn必有極限, 此極限用e來表示.,第二個(gè)重要極限,e是個(gè)無理數(shù) 它的值是 e=2 718281828459045 ,下頁,二、準(zhǔn)則II及第二個(gè)重要極限,準(zhǔn)則II 單調(diào)有界數(shù)列必有極限,若可以證明,(2) xn3,(1) xnxn+1 nN,證明略,13,(1) xnxn+1 nN,大,大,正,比較可知,大,下頁,14,根據(jù)準(zhǔn)則 2 可知數(shù)列,有極限 .,又,(2) xn 3,即 xn 3,下頁,15,下頁,二、準(zhǔn)則II及第二個(gè)重要極限,準(zhǔn)則II 單調(diào)有界數(shù)列必有極限,我們還可以證明,這就是第二個(gè)重要極限,第二個(gè)重要極限,e是個(gè)無理數(shù) 它的值是 e=2 718281828459045 ,16,證: 當(dāng),時(shí), 設(shè),則,下頁,17,當(dāng),則,從而有,故,時(shí), 令,下頁,18,第二個(gè)重要極限,二、準(zhǔn)則II及第二個(gè)重要極限,準(zhǔn)則II 單調(diào)有界數(shù)列必有極限,注:,下頁,19,解,例6,令t=-x,下頁,則x 時(shí) t 于是,20,例7. 求,解: 原式 =,結(jié)束,21,內(nèi)容小結(jié),1. 兩個(gè)重要準(zhǔn)則及其應(yīng)用,(1)夾逼準(zhǔn)則,(2) 單調(diào)有界數(shù)列必有極限,2. 兩個(gè)重要極限,或,22,思考:,23,故極限存在,,備用題,1.設(shè), 且,求,解:,設(shè),則由遞推公式有,數(shù)列單調(diào)遞減有下界,,故,利用極限存在準(zhǔn)則,24,作業(yè):P56-1:(4)(5)(6), P56-2:(3)(4), 4:(2)(3)(5),25,最常見的四種e的定義如下: 1
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025至2030中國登記柜臺(tái)行業(yè)產(chǎn)業(yè)運(yùn)行態(tài)勢及投資規(guī)劃深度研究報(bào)告
- 2025至2030中國電子門鎖行業(yè)深度研究及發(fā)展前景投資評估分析
- 2025至2030中國瑜珈褲行業(yè)產(chǎn)業(yè)運(yùn)行態(tài)勢及投資規(guī)劃深度研究報(bào)告
- 非遺研學(xué)旅游的可持續(xù)發(fā)展與生態(tài)保護(hù)路徑研究
- 教育機(jī)器人引領(lǐng)未來學(xué)習(xí)新體驗(yàn)
- 游戲化學(xué)習(xí)在教育科技領(lǐng)域的應(yīng)用與前景
- 商業(yè)環(huán)境中教育心理學(xué)的價(jià)值體現(xiàn)
- 教育技術(shù)中個(gè)人信息保護(hù)的國際比較研究
- 護(hù)理人員緊急替代培訓(xùn)
- 兒童教育中的學(xué)習(xí)動(dòng)機(jī)培養(yǎng)方法論
- 二年級上冊數(shù)學(xué)課件-2.1 乘法、除法一(乘法引入) ▏滬教版 (共16張PPT)
- 小學(xué)語文人教五年級下冊(統(tǒng)編)第六單元-15、自相矛盾學(xué)歷案
- 無人機(jī)駕駛員國家職業(yè)技能標(biāo)準(zhǔn)(2021年版)(word精排版)
- 中國教育學(xué)會(huì)會(huì)員申請表
- 黃大年式教師團(tuán)隊(duì)申報(bào)
- 新冀人版小學(xué)科學(xué)三年級下冊全冊教案(2022年春修訂)
- 化工機(jī)械設(shè)備課程設(shè)計(jì)(板式塔)__副本
- 工作場所空氣中有害物質(zhì)監(jiān)測的采樣規(guī)范
- 國家開放大學(xué)電大《可編程控制器應(yīng)用》機(jī)考2套真題題庫及答案10
- 畜牧場經(jīng)營管理.ppt
- (完整版)MIL-STD-105E抽樣標(biāo)準(zhǔn)
評論
0/150
提交評論