應(yīng)用于電氣系統(tǒng)的可編程序控制器中英文翻譯、電氣自動化外文文獻翻譯、機電一體化外文翻譯_第1頁
應(yīng)用于電氣系統(tǒng)的可編程序控制器中英文翻譯、電氣自動化外文文獻翻譯、機電一體化外文翻譯_第2頁
應(yīng)用于電氣系統(tǒng)的可編程序控制器中英文翻譯、電氣自動化外文文獻翻譯、機電一體化外文翻譯_第3頁
應(yīng)用于電氣系統(tǒng)的可編程序控制器中英文翻譯、電氣自動化外文文獻翻譯、機電一體化外文翻譯_第4頁
應(yīng)用于電氣系統(tǒng)的可編程序控制器中英文翻譯、電氣自動化外文文獻翻譯、機電一體化外文翻譯_第5頁
已閱讀5頁,還剩11頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

外文原文: Programmable designed for electro-pneumatic systems controller Abstract This project deals with the study of electro-pneumatic systems and The programmable controller that provides an effective and easy way to Control the sequence of the pneumatic actuators movement and the states of pneumatic system. The project of a specific controller for pneumatic applications join the study of automation design and the control processing of pneumatic systems with the electronic design based on microcontrollers to implement the resources of the controller. 1.Introduction The automation systems that use electro-pneumatic technology are formed mainly by three kinds of elements: actuators or motors,sensors or buttons and control elements like valves. Nowadays,mostof the control elements used to execute the logic of the system were substituted by the Programmable Logic Controller(PLC). Sensors and switches are plugged as inputs and the direct cntrol valves for the actuators are plugged as outputs. An internal program executes all the logic necessary to the sequence of the movements,simulates other components like counter,timer and control the status of the system. With the use of the PLC,the project wins agility,because it is possible to create and simulate the aystem as many times as nended .therefore,time can be saved,risk of mistakes reduced and complexity can be increased using the same elements. A conventional PLC,this is possible to find on the market from many companies,offers many resources to control not only pneumatic systems,but all kinds of system that uses electrical comonents .the PLC can be very versatile and robust be applied in many kinds of application in the industry or even security system and automation of buildings. Because of those characteristics,in some applications the PLC offers to much resources that are not even used to control the system,electro-pneumatic system is one of this kind of application.The use of PLC,especially for small Size systems,can be very expensive for the automation project.An alterative in this case is to create a specific controller that can offer the exactly size and resources that the project nends.this can be made using micrcontrollers as the base of this controller. The controller,based on microcontroller,can be very specific and adapted to only One kind of machine or it can work as a generic controller that can be programmed.As a usual PLC and work with logic that can be changed. All the characteristics depend on what is needed and how much experience the designer has with developing an electronic circuit and firmware for microcontroller.But the main advantage of design the controller with the microcontroller is that the designer has the total knowledge of his controller,which makes it possible to control the size of the controller,change the complexity and the application of it.It means that the project gets more independence from other companies,but at the same time the responsibility of the control of the system stays at the designer hands. 2.Electro-pneumatic system On automation system one can find three basic components mentioned before,plus A logic circuit that controls the system. An adequate technique is needed to project the logic circuit and integrate all the necessary components to execute the sequence of movements properly.For asimple direct sequence of movement an intuitive method can be used1,5,but for indirect or more complex sequences the intuition can generate a very complicated circuit and signal mistakes.It is necessary to use another method that can save time of the project,make a clean circuit, can eliminate occasional signal overlapping and redundant circuits. The presented method is called step-by-step or lgorithmic,it is valid for pneumatic and electro-pneumatic systems and it was used as a base in this work. The method consists of designing the systems based on standard circuits made for each change on the state of the actuators,these changes are called steps. The first part is to design those kinds of standard circuits for each step,the next task is to link the standard circuits and the last part is to connect the control elements that receive signals from sensors, switches and the previous movements,and give the air or electricity to the supply lines of each step.In Figs.(1) and (2) the standard circuits are drawn for pneumatic and electro-pneumatic system.It is possible to see the relations with the previous and the next steps. 3.the method applied inside the controller The result of the method presented before is a sequence of movements of the actuator that is well defined by stepas .It means that each change on the position of the actuators is a new state of the system and the transition between states is calld step. The standard circuit described before helps the designer to define the states of the systems and to define the condition to each change between the states. In the end of the design,the system is defined by a sequence that never chances and states that have the inputs and the outputs well defined.The inputs are the condition for the transition and the outputs are the result of the transition. All the configuration of those steps stays inside of the microcontroller and is executed the same way it was designed. The sequence of strings are programmed inside the controller with 5 bytes;each string has the configuration of one step of the process There are two bytes for the inputs,one byte for the outputs and two more for the other configurations and auxiliary functions of the step.After programming,this sequence of strings is saved inside of a non-volatil Memory of the microcontroller,so they can be read and executed. The controller task is not to work in the same way as a conventional PLC,but the purpose of it is to be an example of a versatile controller that is design for an specific area.A conventional PLC process the control of the system using a cycle where it makes an image of the inputs,execute all the conditions defined by the configuration programmed inside,and then update the state of the outputs. This controller works in a d ifferent way,where it read the configuration of the step,wait the condition of inputs to be satisfied,then update the state or the outputs and after that jump to the next step and start the process again. It can generate some limitations,as the fact that this controller cannot execute, inside the program,movements that must be repeated for sometime,but this problem can be solved with some external logic components.Another limitation is that the controller cannot be applied on systems that have no sequence.These limitations are a characteristic of the system that must be analyzed for each application. 4.Characteristics of the controller The controller is based on the MICROCHIP microcontroller PICF8776,7with 40 pins,and it has all the resources neened for this project.it has enough pins for all the comonents,serial communication implemented in circuit,EEPROM memory to save all the configuration of the system and tne sequence of steps.For the execution of the main program,it offers comlete resources as timers and interruptions. The list of resources of the controller was created to explore all the capacity of the microcontroller to make it as complete as possible.during the step,the program chooses how to use the resources reading the configuration string of the step.this string has two bytes for digital inputs,one used as a mask and the other one used as a value expeced.one byte is used to configure the output or time-out.the EEPROM memory inside is 256 bytes length that is enough to save the string of the steps,with this characteristic it is possoble to save between 48 steps(table1). The controller(FIG.3)has also a display and some buttons that are used with an interactive menu to program the sequence of steps and other configurations. 4.1. Interaction components For the real application the conteoller must have some elements to interact with the final user and to offer a complete monitoring of the system resources that are available to the designer while creating the logic control of the pneumatic system(Fig.3). Intercative mode of work; function available on the main program for didactic purposes,the use gives the signal to execute the step. LCD display,which shows the status of the system,values of inputs,outputs,timer and statistics of the sequence execution. Beep to give important alerts,stop ,start and emergency. Led to show power on and others to show the state of iputs and outputs. 4.2. security To make the final application works property ,a correct configuration to execute the steps in the right way is needed,but more then that it must offer solutions in case of bad functioning or problems in the execution of the sequence.The controller offers the possibility to configure two internalvirtual circuits that work in parallel to the principal.These two circuits can be used as emergency or reset buttons and can return the system to a certain state at any time.There are two inputs that work with interruption to get an immediate access to these functions.It is possible to configure the position,the buttons and the value of time-out of the system. 4.3. User interface The sequence of strings can be programmed using the interface elements os the controller.A computer interface can be used to generate the user program easily.With a good documentation the final user can use the interface to configure the strings of bytes that define the steps of the sequence.But it is possible to create a program with visual resources that works as a translator to the user, it changes his work to the values that the controller understands. To implement the communication between the computer interface and the controller a simple protocol with check sum and number of bytes is the minimum requirementas to guarantee the integrity of the data. 4.4.Firmware The main loop works by reading the strings of the steps from the EEPROM memory that has all the information about the steps.In each step,the status of the system is saved on the memory and it is shown on the display too.Depending of the user configuration,it can use the interruption to work with the emergency circuit or time-out to keep the system safety .In Fig.4,a block diagram of micro controller main program is presented. 5.Example of electro-pneumatic system The system is not a representation of a specific machine,but it is made with some common novements and components found in a real one.The system is composed of four actuators.The actuators A,B and C are double acting and D-single acting.Actuator A advances and stays in specified position till the end of the cycle,it could work fixing an object to the next action for example(Fig.5),it is the first step.When a reaches the end position,actuator C starts his work together with B,making as many cycles as possible during the advancing of B.It depends on how fast actuator B is advancing;the speed is regulated by a flowing control valve.It was the second step.B and C are examples of actuators working together,while B pushes an object slowly,C repeats ins work for some time When B reaches the final position,C stops immediately its cycle and comes back to the initial position.The actuator D is a single acting one with spring return and works together with the back of C,it is the third step.D works making very fast forward and backward movement,just one time.Its backward movement is the fourth step.D could be a tool to make a hole on the object. When Dreaches the initial position,A and B return too,it is the fifth step.Fig.6 show the first part of the designing process where all the movements of each step should be defined2. (A+)means that the actuator A moves to the advanced position and (A?) to the initial position. The movements that happen at the same time are joined together in the same step. Th system has five steps.These two representations of the system. (Figs.5 and 6)together are enough to describe correctly all the sequence. With them is possible to design the whole control circuit with the necessary logic components.But till this time,it is not a complete system,because it is missing some auxiliary elements that are not included in this draws because they work in parallel with the main sequence. These auxiliary elements give more function to the circuit and are very important to the final application,the most important of them is the parallel circuit linked with all the others steps.That circuit should be able to stop the sequence at any time and change the state of the actuators to a specific position.This kind of circuit can be used as a reset or emergency buttons. The next figs.7 and 8 show the result of using the method without the controller.Theese pictures are the electric diagram of the control circuit of the example,including sensors,buttons and the coils of the electrical valves. The auxiliary elements are included,like the automatic/manual switcher that permit a continuous work and two start buttons that make the qperator of a machine use their two hands to start the process,reducing the ridk of accidents. 6.Changing the example to a user program In the previous chapter ,the electro-pneumatic circuits were presented,used to begin the study of the requires to control a system that work with steps and must offer all the functional elements to be used in a real application .but,as explained above,using a PLC or this specific conteoller ,the control becomes easier and the complexity can be increase also. With the time diagram,the step sequence and the elements of the system described in Table 2 and Figs.5 and 6 it is possible to the new programming allows that the configuration of the steps be separated,like described by the method .The sequence is defined by itself and the steps are described only by the inputs and outputs for each step. Table 5 shows how the user program is saved inside the controller, this is the program that describes the control of the exanple shown before. The sequence can be defined by 25 bytes these bytes can be divded in five strings with 5 bytes each that define each step of the sequence (Figs.9 and 10) 7.conclusion The controller developed for this work (Fig .11)shows that it is possible to create a very useful programmable controller based on microcontroller. External memories that the miscrocontroller offers inside Outside the microcotroller , there ara only components to implement the outputs , inputs , analoginputs , display for the interface and the serial communication. Using only the internal memory , it is possbel to control a pneumatic system that has a sequence with 48 stsps if all the resources for all steps ara used , but it is possble to reach sixty steps in the case of a simpler system . The programming of the controller dose not use PLC languages , but a configuration that is simple and intuitive , With electro-pneumatic system , the programming follows the same technique that was used before to design the system , but here the designer workes directly with the states or steps of the system. With a very simple machine language the designer can define all the configuration of the step using four or five bytes.It depends only on his experience to use all the resources of the controller.The controller task is not to work in the same way as a commercial PLC but the purpose of it is to be an example of a versatile controller that is designed for a specific area.Because of that ,it is not possible to say which one works better ;the system made with microcontroller is an alternative that works in a simple way.譯文: 應(yīng)用于電氣系統(tǒng)的可編程序控制器 摘要 此項目主要是研究電氣系統(tǒng)以及簡單有效的控制氣流發(fā)動機的程序和氣流系統(tǒng)的狀態(tài)。它的實踐基礎(chǔ)包括基于氣流的專有控制器、自動化設(shè)計、氣流系統(tǒng)的控制程序和基于微控制器的電子設(shè)計。 1 簡介 使用電氣技術(shù)的自動化系統(tǒng)主要由三個組成部分:發(fā)動機或馬達,感應(yīng)器或按鈕,狀如花瓣的控制零部件?,F(xiàn)在,大部分的系統(tǒng)邏輯操作的控制器 都被程序邏輯控制器( PLC) 所取代。 PLC 的感應(yīng)器和開關(guān)是輸入端,而發(fā)動機的直接控制閥是輸出端,其中有一個內(nèi)部程序操控所有運行必需的邏輯,模擬其他的裝置如計算器、定時器等,對整個系統(tǒng)的運行狀態(tài)進行控制。 因為可以根據(jù)需要無數(shù)次創(chuàng)建和模擬這樣的系統(tǒng),所以藉由 PLC 的使用,此項目有靈活的優(yōu)點。因此,可以節(jié)省時間,減少失誤的危險,同時在使用相同材料的情況下,它可以更加精密。 市場上的許多家公司都使用了常規(guī)的 PLC,它不僅可以用氣流系統(tǒng)來控制,還可以用各種電氣設(shè)備。 PLC 的用途廣泛,可以應(yīng)用于許多工業(yè)生產(chǎn)中,甚至 用于建筑物的安全和自動化系統(tǒng)中。 由于以上的各種特性,在一些實際應(yīng)用中 PLC 提供了很多的資源,甚至包括不控制系統(tǒng)的資源,電氣系統(tǒng)就是一種這樣的應(yīng)用。對于自動化的工程, PLC 的使用是比較昂貴的,尤其是對那些小型的系統(tǒng)。 針對這種情況可行的一種辦法是創(chuàng)建一個可提供特定尺寸和功能的控制器 3,4。這種控制器可以根據(jù)微控制器來制作。 這種基于微控制器的控制器適用范圍比較小,只能用于一個類型的機器或者可以用做一個像普通 PLC 一樣可以被編程的控制器,那樣它就可以通過可變化的邏輯程序來進行各種作業(yè)。所有的這些特性根據(jù)具 體需要的不同而不同,具體的設(shè)計者的經(jīng)驗的不同而不同。但是這種設(shè)計的主要優(yōu)點在于設(shè)計人員非常了解自己的控制器,可以自由掌握控制器的大小尺寸,改變它的功能。這就意味著此項目有更多的獨特性,但同時系統(tǒng)的控制也由它的設(shè)計者所控制。 2 電氣系統(tǒng) 人們可以從一個自動化系統(tǒng)中找到三個上文中提到的基本部件,外加一個控制系統(tǒng)的邏輯線路。只有成熟先進的技術(shù)能做出特定的邏輯線路和執(zhí)行正確操作所需要的部件升級。 對于一個簡單的運動,系統(tǒng)自動程序可以完成,但是對于間接或更加復(fù)雜的運動,系統(tǒng)的程序就會產(chǎn)生復(fù)雜的線路和錯誤的信號。這是 就需要另一種方法可以節(jié)省時間,產(chǎn)生清晰線路,能夠防止偶然的信號交疊和線路堵塞。 這種方計的不同標準的線路基法叫循序漸進式或規(guī)則系統(tǒng),它對氣流和電氣系統(tǒng)非常有效,而且也是此項目的一個基礎(chǔ)。它包括根據(jù)發(fā)動機狀態(tài)各個不同變化所設(shè)礎(chǔ)上的系統(tǒng)。 第一步是為每個步驟設(shè)計那些種標準的線路。第二步是聯(lián)編標準的線路,最后一步是連接接收來自感應(yīng)器,開關(guān)和先前的運動信號,同時把空氣或電傳送給每個步驟的補給線。如圖中所示, (1)和 (2) 標準線路是為氣流的和電氣系統(tǒng)服務(wù) .我們能夠很清楚的看到每一步驟和下一個步驟之間的聯(lián)系。 3 控制器內(nèi)部的應(yīng)用原理 上述方法可以使發(fā)動機的每一個運動都被很好地用步驟來定義。這也就是說發(fā)動機的每一次運動變化都是系統(tǒng)的一個新的狀態(tài),而兩個不同狀態(tài)之間的轉(zhuǎn)變叫做步驟。 先前提到的標準線路可以幫助設(shè)計人員定義系統(tǒng)的不同狀態(tài)和不同步驟的變化所帶來的不同環(huán)境。在設(shè)計的最后階段,系統(tǒng)中會有一個從來不變化的序列和明確的輸入和輸出端。我們把一個序列從輸入端輸入,經(jīng)過轉(zhuǎn)換后,由輸出端輸出。 這些步驟的所有過程都是在微控制器內(nèi)部進行的,并且以同樣的方式在運行著。部件的序列在控制器里被 5 個位元組規(guī)劃 ; 每個部分都有 程序的一個步驟結(jié)構(gòu)。輸入端有二個位元組 ,輸出端有一個,其他結(jié)構(gòu)部分和附加功能步驟有兩個。 在編程之后,部件序列被內(nèi)部微控制器的記憶所儲藏,因此,他們是可讀的而且可以運行。 不同于傳統(tǒng)的 PLC,這種控制器的工作目的是成為特定領(lǐng)域設(shè)計的多用控制器。傳統(tǒng)的 PLC 的系統(tǒng)運行程序是一個循環(huán)的線路:輸入一個圖像 ,運行所有的內(nèi)部程序 , 然后升級輸出的狀態(tài)。 這一個控制器以不同的方式工作 ,它讀取步驟的結(jié)構(gòu) ,等待輸入 ,然后升級或輸出,然后直接跳躍到下一個步驟,開始另一次的程序運行。 它也有局限性,例如這種控制器有時會不執(zhí) 行指令,在同一程序指令下,會出現(xiàn)某一個運行的反復(fù)等等,但是這一個問題可以通過外部的邏輯運行解決。另外,這中控制器在沒有序列的系統(tǒng)上不能夠被應(yīng)用。這些局限性也是這個系統(tǒng)的特性,這種系統(tǒng)的每一個應(yīng)用都必須要有相應(yīng)的系統(tǒng)分析。 4 控制器的特色 這種控制器以微集成電路微控制器 PIC16F8776,7 為基礎(chǔ) ,它擁有全部此次項目所需要的資源。它有足夠的插孔,線路連續(xù)通訊 EEPROM 記憶解救系統(tǒng)的所有結(jié)構(gòu)和步驟的序列。它提供了項目所需要的所有的運行,例如定時器和分岔等。 我們做出了控制器的資源目錄,想盡可能 的使它變的完善。在步驟的運行過程中,程序自動選擇如何讀取每一步驟的結(jié)構(gòu)。這個操作有兩個位元組位于電子輸入處。一個位元組位于輸出端,還有一個被用作內(nèi)部定時器,類似輸入或暫停功能。 EEPROM 記憶內(nèi)部是 256 位元組,可以儲藏所有步驟的運行 ,即可以儲藏 48 個步驟之間的所有運行。 除了一個互動菜單外,這種控制器還有一個控制臺和一些指令按鈕,他們一起控制各個步驟的運行和連續(xù)性,也控制其他的一些裝置。 4.1 交互作用 在實際運行操作中,控制器需要有一些輔助設(shè)備幫助它和使用者進行互動,可以提供可靠的操作監(jiān)控,同時 對氣流系統(tǒng)進行邏輯控制。 ( 1)交互工作模式: 在主要的程序中,使用者可以根據(jù)指導(dǎo)發(fā)出信號來進行具體步驟的操作 ( 2) LCD 平臺可以顯示系統(tǒng)工作的狀態(tài),衡量輸入,輸出,計時器和運行的數(shù)據(jù)等。 ( 3)嘀嘀聲用來提示重要警示,停止,開始和一些緊急情況的發(fā)生 ( 4)亮燈表示接通電源,和輸入,輸出狀態(tài)。 4.2 安全性 如果想正常運行程序,必須保證每一個步驟都正確的執(zhí)行。更重要的是,應(yīng)該有預(yù)防運行故障和問題的解決方法??刂破魈峁┝诉@種可能性

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論