刀具成本的檢測外文文獻(xiàn)翻譯@中英文翻譯@外文翻譯_第1頁
刀具成本的檢測外文文獻(xiàn)翻譯@中英文翻譯@外文翻譯_第2頁
刀具成本的檢測外文文獻(xiàn)翻譯@中英文翻譯@外文翻譯_第3頁
刀具成本的檢測外文文獻(xiàn)翻譯@中英文翻譯@外文翻譯_第4頁
刀具成本的檢測外文文獻(xiàn)翻譯@中英文翻譯@外文翻譯_第5頁
已閱讀5頁,還剩56頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 1 附錄: 外文資料和中文翻譯 外文資料: Testing of Tool Life Cost Machining cost is the sum of the machine tool cost and the cutter cost. The machine cost consists of idle cost, machining cost, and tool changing cost. The machining cost decreases with increased cutting speed; while the idle cost remains constant with changes in cutting speed. From the machining data handbook 24 the generalized machining cost equation is listed below: 13. . . . .)1(82.382.382.33211 pCbPrrdir GtKCKGtK CvTfDLvTfD L tttrRvf eLDMC In order to optimize the cutting condition, it is essential to determine the mathematical relationship between the cuttings inserts type and cutting speed. In our study Taylors model will be used in relating the cutting tool life to the cutting speed: VT =C . V= cutting speed T= Cutting time to produce a standard amount of flank wear (e.g. 0.2mm) n and C are constants for the material or conditions used. In order to determine constants n and C for the cutting inserts under study in machining 4140 steel and the conditions used in the experiments, a LogV against 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 2 LogT is drawn and shown for the three types of cutting inserts under study Figure 1, Figure 2are for KC313 under dry and wet conditions, Figure 3, and Figure 4are for KC732. In addition, Figure 6, and Figure 7are for KC5010. It can be seen from the aforementioned figures that in-spite of considerable scatter in test measurements, the results fall reasonably well on a straight line. From the curves it can be seen that for the same cutting speed the tool life increases by increasing the wear criterion and introduction of coolant emulsion for KC313 and KC732. However, as seen in KC5010 tool life increases by increasing the wear criterion and decreases by introducing coolant. This negative behavior of KC5010 toward coolant emulsion and the effect of wear mechanisms behind it will be covered in Chapter 5. As well as the wear kinds on other inserts investigated in this research. Metal cutting studies focused on tools wear, tool life, and wear mechanisms. However, future research should pay more attention to other factors as well: Wear criterion value set up by the factory system, which basically the tool wear threshold value that suits the factory product. Types of tools used, such as carbide tips and high speed tools. Studying the variation of tool life wear under dry and wet cutting that effect the tool life equation constants (C,n) is useful. This will improve tool life because it also affects the economy of cutting 24. In order to determine the effect of cutting fluid on the selected wear criterion, relationship between different wear criteria and machining cost for the cutting inserts under HSM must be studied. The value of the tool life constants (C,n) for different wear criteria are extracted and plotted within the ranges 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 3 listed in table (1). The values of the constants (C, n) extracted from Figure 1/B, Figure 3IB, and Figure 3-10 are shown in tables1 and 2. Further explanation of the relationship between these parameters and wear criteria will be covered through out the next figures. Figure5represents the relationship between n and wear criterion. As wear criterion increase n. (a) Log (time) versus Log (speed) at different wear criteria (dry condition). 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 4 (b) Log (time) versus Log (speed) at different wear criteria (wet condition)Figure 2Time versus speed at different wear criteria KC313. (a) Log (time) versus Log (speed) at different wear criteri(drycondition). (b) Log (time) versus Log (speed) at different wear criteria (wet condition). (a) Log (time) versus Log (speed) at different wear criteria (dry condition) 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 5 (b) Log (time) versus Log (speed) at different wear criteria (wet condition). Figure 3Time versus speed at different wear criteria KC732 (a)Log (time) versus Log(speed) at different wear criteria (dry condition), (b) Log (time) versus Log (speed) at different wear criteria (wet condition) (a) Log (time) versus Log (speed) at different wear criteria (dry condition). 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 6 (b) Log (time) versus Log (speed) at different wear criteria (wet condition) Figure 3-10 Time versus speed at different wear criteria KC5010 (a) Log (time) versus Log(speed) at different wear criteria (dry condition), (b) Log (time) versus Log (speed) at different wear criteria (wet condition). Table 1 Ranges of plotted tool life constants. Range Cutting Insert Condition 0 LogT 2.6 KC313 Dry 0 Log T 4.1 KC313 Wet 0 LogT 2.6 KC5010 Dry 0 Log T 1.75 KC5010 Wet 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 7 0 LogT 2.1 KC732 Dry 0 Log T 2.4 KC732 Wet Table 2 Wear Criteria versus C and n for three cutting inserts (Dry Condition). Wear Criteria (mm) KC 313 KC 5010 KC732 C n C n C n constant constant constant constant constant constant 0.15 142 0.260 518 0.248 630 0.288 0.2 165 0.212 560 0.264 964 0.364 0.25 196 0.240 596 0.278 1099 0.371 0.3 238 0.293 605 0.279 1233 0.393 0.35 250 0.275 612 0.279 1399 0.421 0.4 263 0.281 625 0.281 1503 0.434 0.45 282 0.292 625 0.278 1517 0.434 0.5 292 0.294 630 0.276 1577 0.442 0.55 302 0.296 632 0.274 1592 0.443 0.6 313 0.300 638 0.274 1611 0.444 Table 3Wear Criteria versus C and n for three cutting inserts (Wet Condition). KC 313 KC 5010 KC732 Wear criterion (mm) C n C n C n 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 8 0.15 167 0.201 497 0.298 881.050 0.332 0.2 187 0.210 619 0.310 1051.96 0.353 0.25 228 0.240 610 0.312 1297.18 0.3930 0.3 244 0.250 628 0.309 1545.25 0.4240 0.35 267 0.260 626 0.300 1782.38 0.4540 0.4 291 0.280 619 0.290 1918.67 0.4680 0.45 338 0.310 615 0.282 2137.96 0.4910 0.5 303 0.310 616 0.279 2477.42 0.5240 0.55 397 0.340 618 0.278 2837.92 0.5540 0.6 422 0.350 626 0.279 3243.39 0.5830 values increase for both cutting conditions. In addition, n values for wet condition is lower than dry conditions up until wear criterion 0.38 after which n for wet starts to get bigger. Figure 5 shows C values versus wear criterion, and reveals C increases as the wear criterion increases for both dry and wet cutting. However, C values under wet condition are getting higher than under dry conditions. This proves the increase in tool life by introducing coolant emulsion and by increasing the wear criterion for this cutting tool material during cutting. Next, Figure 6represents values of n with respect to wear criterion for KC732 material under dry and wet conditions. As the wear criteria increase n values increase. Furthermore, wear curve is higher than dry curve. Figure7 presents a 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 9 proportional relationship between constant C values and wear criterion. However, wet C curve is higher than dry curves, which indicates the benefit of using coolant emulsion for material KC732. This benefit becomes more essential by increasing the wear criterion. The higher the C value; the higher the tool life becomes. Figure8shows the effect of introducing coolant emulsion on cutting tool performance. Therefore, the higher n; the lower the tool life is. Figure9shows the drop in C values by increasing the wear criterion and coolant usage; thus indicating a shorter tool life in wet cutting condition. During the previous curves of KC313 and KC732 materials, the increase in n values was an indication off shortened tool life. However, the huge increase in wet C curves over dry C over compensated the drop and elongated tool life for KC313 and KC732. In contrast, the case is for KC5010. Figure 12 and Figure 10 are for uncoated cemented carbide (KC313). It shows the relationship between cost cutting speeds for different wear criteria under dry and wet cutting. 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 10 (a) n values versus wear criterion (wet and dry). (b) C values versus wear criterion (wet and dry). Figure 11Taylors constants for KC313 versus wear criteria,(a) n values versus wear criteria (wet and dry), (b) C values versus wear criteria (wet and dry). (a) n values versus wear criterion (wet and dry). 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 11 (b) C values versus wear criterion (wet and dry). Figure 12Taylors constants for KC732 versus wear criteria, (a) n values versus wear criteria (wet and dry), (b) C values versus wear criteria (wet and dry). (a) n values versus wear criterion (wet and dry). 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 12 (b) C values versus wear criterion (wet and dry) Figure 13 Taylors constants for KC5010 versus wear criteria, (a) n values versus wear criteria (wet and dry), (b) C values versus wear criteria (wet and dry). Both conditions indicate as the wear criteria increases the machining cost decreases. Nonetheless, as the speed increases the cost reaches optimum value and then increases. Figure 14 and Figure 3-15B show economical comparison between dry and wet cutting at (0.4 and 0.6 mm) wear criterion. Optimum cutting speed for dry cutting is 90 m/min while 120 m/min is for wet cutting. Cost as a function of speed is presented in Figure15 and Figure 16 for sandwich coating (KC732) under dry and wet conditions. Again, as wear criteria increases, cost decreases. Furthermore, the optimum speed of 260 m/min of dry cutting, increased to 360 m/min in cases of wet cutting. This indicates the importance of coolant with this material not only decreases cost but also increases productivity. 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 13 Figure 3-17A and Figure 17 summarize the relationship of cost and speed for coated tools with TiALN (KC5010) under dry and wet cutting conditions. As the cutting speed increases the cost increases and as the wear criteria increases the cost decreases. The optimum cost was at the lowest speed (210 m/min) in both machining conditions. A cost comparison between KC732 and KC5010 at different wear criteria and machining conditions is presented in Figures 18 and19. It can be seen that KC732 responded positively to coolant in terms of extended tool life, and increased the optimum cutting speed from 260m/min to 360 nn/min. Nonetheless, coolant introduction to KC5010 at high speed cutting lowered the tool life and increased machining cost. The data presented in the aforementioned figures shows that dry cutting is more cost effective than wet cutting within speed range of 210 m/min-310 m/min for KC732 and vise versa at any speed higher than 310m/min. Cutting tool material KC5010 is cost effective at dry and 210 m/min. Therefore, in spite of the cost of the KC732; it is proven to be superior over KC313 (uncoated) and KC5010 in wear cost. Table 3 summarizes the optimum values of cost and speed under wet and dry cutting. Figures18, and 17for KC313 (uncoated) show the relationship between costs and wear criterion at different cutting speeds under dry and wet conditions. Figure 20, and Figure 21 are plotted for KC732 presenting cutting cost as a function of wear criteria for dry and wet conditions. Figure 3-21A and Figure 3-21B are plotted for KC5010. The curves show that for the same cutting velocity, by increases the selected wear criterion, the cost decreases. 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 14 The improved performance of (KC313) under wet over dry cutting in terms off tool life is presented in Figure 22. The results of the two coatings testing methods, of flank wear for the KC732 and KC5010 are shown in Figure 23. Clearly this indicates improvement in cutting inserts life with TiN-TiCN-TiN coatings (KC732) under wet over dry cutting, and reduction in tool life of TiALN coating (KC5010) on wet cutting. Finally, KC732 provides superior performance under all cutting conditions over KC5010. 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 15 (a) The variation of cost versus cutting speed at different wear criteria (dry ). (b) The variation of cost versus cutting speed at different wear criteria (wet). Figure 23 Cost variation with speed for KC313, (a) The variation of cost versus cutting speed at different wear criteria (dry), (b) The variation of cost versus cutting speed at different wear criteria (wet). 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 16 (a) The variation of cost versus cutting speed at 0.4mm wear criterion. (b) The variation of cost versus cutting speed at 0.6mm wear criterion Figure 24 Cost versus speed comparison at wet and dry at two values of wear Criterion: (a) The variation of cost versus cutting speed at 0.4mm wear Criterion, (b) The variation of cost versus cutting speed at 0.6mm wear criterion. 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 17 (a) The variation of cost versus cutting speed at different wear criteria (dry ). (b) The variation of cost versus cutting speed at different wear criteria (wet). Figure 25 Cost variation with speed for KC732, (a) The variation of cost versus cutting speed at different wear criteria (dry), (b) The variation of cost versus cutting speed at different wear criteria (wet). 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 18 (a) The variation of cost versus cutting speed at different wear criteria (dry ). (b) The variation of cost versus cutting speed at different wear criteria (wet). Figure 26 Cost variation with speed for KC732, (a) The variation of cost versus cutting speed at different wear criteria (dry), (b) The variation of cost versus cutting speed at different wear criteria (wet). 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 19 (a) Cost versus speed at 0.4 mm wear criterion (b) Cost versus speed at 0.6 mm wear criterion 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 20 Figure 27 Cost comparison between KC5010 and KC732 at different wear criteria (a) Cost versus speed at 0.4 mm wear criterion, (b) Cost versus speed at 0.6 mm wear criterion. Table4 Comparison between three cutting inserts at the same wear criterion Tool Type Wear criterion (mm) Optimum Cost/ Speed (m/min) Dry Wet KC313 0.6 47$ / 90 40$/90 KC5010 0.6 34$ / 210 36$/210 KC732 0.6 29$ / 260 28.84$/360 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 21 (a) The variation of cost versus wear criterion at different cutting speeds (dry ). (b) The variation of cost versus cutting speed at different wear criteria (wet). 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 22 Figure 26 Cost variation with wear criteria for KC313, (a): The variation of cost versus cutting speed at different wear criteria (dry), (b): The variation of cost versus cutting speed at different wear criteria (wet). ( a) The variation of cost versus wear criterion at different cutting speeds (dry ) 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 23 (b)The variation of cost versus wear criterion at different cutting speeds (wet). Figure 3-20 Cost variation with wear criteria for KC732, (a): The variation of cost versus cutting speed at different wear criteria (dry), (b): The variation of cost versus cutting speed at different wear criteria (wet). (a) The variation of cost versus wear criterion at different cutting speeds (dry ). 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 24 (b) The variation of cost versus wear criterion at different cutting speeds (wet). Figure 3-21 Cost variation with wear criteria for KC5010, (a) The variation of cost versus cutting speed at different wear criteria (dry), (b) The variation of cost versus cutting speed at different wear criteria (wet) (a) Tool life at 0.4 mm wear criterion for KC313 (dry & wet). 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 25 (b)Tool life at 0.4 mm wear criterion of KC732 and KC5010 (dry &wet). Figure 3-22 Tool life comparison at 0.4 wear criterion under dry and wet(a) Tool life at 0.4 mm wear criterion for KC313 (dry & wet), (b) Tool life at 0.4 mm wear criterion of KC732 and KC5010 (dry &wet). The cutting inserts were retested at cutting speed values within the range of experimental testing speeds under dry and wet machining condition. The results presented are for the cemented carbide uncoated (KC313), cemented carbide coated with TiALN (KC5010), and for the KC732. Figures 3-23A and 3-23B show the theoretical and experimental results of machining KC313 at a cutting speed of 100 m/min, and 160 m/min respectively. A good agreement between theoretical and experimental values was noticed indicating the accuracy of Taylors formula in predicting the tool life. Figures 3-24A and 3-24B present theoretical and experimental results of machining KC5010, at two different cutting speeds 280 m/min and 390 m/min good agreement between both was noticed. Experimental and theoretical data for the KC732 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 26 are presented in Figures 3-25A, and 3-25B under 280m/min and 390m/min. In this section result samples were presented and the rest of figures are included in the appendix. (a) Theoretical and experimental results of machining KC313 at 100m/min. 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 27 (b) Theoretical and experimental results of machining KC313 at 160m/min. Figure 3-23 Theoretical and experimental results for KC313 under wet and dry cutting at different speeds: (a) Theoretical and experimental results of machining KC313 at 100m/min, (b) Theoretical and experimental results of machining KC313 at 160m/min. 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 28 (a) Theoretical and experimental results of machining KC5010 at 280m/min. (b) Theoretical and experimental results of machining KC5010 at 390m/min. Figure 3-24 Theoretical and experimental results for KC5010 under wet and dry cutting at different speeds: (a) Theoretical and experimental results of machining KC5010 at 280m/min, (b) Theoretical and experimental results of machining KC5010 at 390m/min. 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 29 (a) Theoretical and experimental results of machining KC732 at 280m/min. (b) Theoretical and experimental results of machining KC732 at 390m/min. Figure 3-25 Theoretical and experimental results for KC732 under wet and dry cutting at different speeds: (a) Theoretical and experimental results of machining 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 30 KC732 at 280m/min, (b)Theoretical and experimental results of machining KC732 at 390m/min. 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 31 中文翻譯: 刀具成本的檢測 加工成本是加工工具成本和切削成本的總和。機(jī)床成本由閑置費(fèi)用,加工費(fèi)用和工具改變費(fèi)用組成。當(dāng)改變切削速度的情況下閑置費(fèi)用保持不變。從機(jī)械數(shù)據(jù)手冊 24上表明機(jī)械設(shè)備成本的公式如下: 錯(cuò)誤 !未指定書簽。 .)1(82.382.382.33211 pCbPrrdir GtKCKGtK CvTfDLvTfD L tttrRvf eLDMC 為了優(yōu)化切割條件 ,必須確定切割深度大小和切割速度的數(shù)學(xué)關(guān)系式 .在 我們學(xué)習(xí)的泰勒模型將被用于確定切削速度對切削刀具壽命的影響 : VT =C -3-2 V=切削速度 T=切割時(shí)產(chǎn)生的標(biāo)準(zhǔn)金額側(cè)翼磨損 (例如 .0.2 毫米 ) N和 C都是由被使用的材料或者工作條件所決定的常數(shù) . , 為了確定進(jìn)給時(shí)的常數(shù) n和 C我們以 4140 鋼在實(shí)驗(yàn)的條件下進(jìn)行研究,以 LogV 和 LogT 為坐標(biāo)進(jìn)行作圖,畫出了三種類型的進(jìn)給圖形,圖 1、圖 2 是對 KC313 為研究對象在干和濕的條件下分別做出的圖形,圖 3 和圖 4 是對 KC732 為研究對象在干和濕兩種狀態(tài)下所做的圖形,另外 ,圖 5、圖 6 是以KC5010 為研究對象在干和濕兩種狀況下所做的圖形 . 從上述的圖形可以看出不管測量的次數(shù)有多少 ,其 結(jié)果都是呈直線分布的形式下降 ,從曲線我們能夠看出,在相同的切削速度的條件下,增加磨損標(biāo)準(zhǔn)和對 KC313 和 KC732 使用冷卻河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 32 液都可以提高工具的使用壽命。然而,對于 KC5010 來說提高磨損標(biāo)準(zhǔn)和降低使用冷卻液對提高 KC5010 工具壽命有好處。冷卻乳液的這種抑制作用和對磨損機(jī)構(gòu)的效果我們把它列入到了第五章。以及其他類型的磨損也將插入到那里研究。 金屬的切削研究主要集中在刀具的磨損、刀具的壽命和磨損機(jī)理。不過 ,未來的研究應(yīng)該更加關(guān)注其他因素的影響 : 通過工廠體系建立磨損標(biāo)準(zhǔn),基本的刀具磨損開端取決于工廠的產(chǎn)品。 使 用刀具的類型,向碳素鋼刀具和高速切削刀具。 這對于研究在干和濕的條件下研究影響刀具壽命的因素常數(shù)( C, n)是有用的。這將提高刀具的壽命,因?yàn)樗矊⒂绊懙角邢鞯慕?jīng)濟(jì)性 24。 為了確定切削液在選擇磨損標(biāo)準(zhǔn)時(shí)所起的作用 ,不同的磨損標(biāo)準(zhǔn)和經(jīng)常的進(jìn)給成本在 HMS 下必須被研究。不同切削標(biāo)準(zhǔn)的刀具壽命常數(shù)在表( 1)所列的表格中被摘錄和劃分。從圖 7。圖 8、圖 9 的常數(shù)( C, n)的價(jià)值在表 1 和表 2中被反映出來。在以后的圖中說明這些參數(shù)和磨損標(biāo)準(zhǔn)的關(guān)系。圖 10 描述了 n和磨損標(biāo)準(zhǔn)的關(guān)系。當(dāng)提高 n時(shí)磨損標(biāo)準(zhǔn)的變化。 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 33 圖 1 (a)以 Log( T)和 Log(V)為坐標(biāo)在不同的磨損標(biāo)準(zhǔn)的情況下所做的圖形(干條件) 圖 2 (b)以 Log( T)和 Log(V)為坐標(biāo)在不同的磨損標(biāo)準(zhǔn)的情況下所做的圖形(濕條件) 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 34 圖 2 KC313 在不同的磨損標(biāo)準(zhǔn)下由時(shí)間( T)和速度( V)為坐標(biāo)所做的圖形( a)以 Log( T)和 Log(V)為坐標(biāo)在不同的磨損標(biāo)準(zhǔn)的情況下所做的圖形(干條件) (b) 以 Log( T)和 Log(V)為坐標(biāo)在不同的磨損標(biāo)準(zhǔn)的情況下所做的圖形(濕條件) 圖 3 (a)以 Log( T)和 Log(V)為坐標(biāo)在不同的磨損標(biāo)準(zhǔn)的情況 下所做的圖形(干條件 ) 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 35 圖 4 (b)以 Log( T)和 Log(V)為坐標(biāo)在不同的磨損標(biāo)準(zhǔn)的情況下所做的圖形(濕條件 ) 圖 3-9 KC732 在不同的磨損標(biāo)準(zhǔn)下由時(shí)間( T)和速度( V)為坐標(biāo)所做的圖形( a)以 Log( T)和 Log(V)為坐標(biāo)在不同的磨損標(biāo)準(zhǔn)的情況下所做的圖形(干條件) (b) 以 Log( T)和 Log(V)為坐標(biāo)在不同的磨損標(biāo)準(zhǔn)的情況下所做的圖形(濕條件 ) 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 36 圖 5 ( a) 以 Log( T)和 Log(V)為坐標(biāo)在不同的磨損標(biāo)準(zhǔn)的情況下所做的圖形(干條件) 圖 6 (b)以 Log( T)和 Log(V)為坐標(biāo)在 不同的磨損標(biāo)準(zhǔn)的情況下所做的圖形(濕條件) 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 37 圖 3 KC5010 在不同的磨損標(biāo)準(zhǔn)下由時(shí)間( T)和速度( V)為坐標(biāo)所做的圖形 ( a)以 Log( T)和 Log(V)為坐標(biāo)在不同的磨損標(biāo)準(zhǔn)的情況下所做的圖形(干條件) (b) 以 Log( T)和 Log(V)為坐標(biāo)在不同的磨損標(biāo)準(zhǔn)的情況下所做的圖形(濕條件) 表 1 刀具壽命常數(shù)的范圍劃分 Range Cutting Insert Condition 0 LogT 2.6 KC313 Dry 0 Log T 4.1 KC313 Wet 0 LogT 2.6 KC5010 Dry 0 Log T 1.75 KC5010 Wet 0 LogT 2.1 KC732 Dry 0 Log T 2.4 KC732 Wet 表 2 在三種刀具材料下由 C和 n所做的磨損標(biāo)準(zhǔn)圖(干條件下) Wear Criteria (mm) KC 313 KC 5010 KC732 C n C n C n constant constant constant constant constant constant 0.15 142 0.260 518 0.248 630 0.288 0.2 165 0.212 560 0.264 964 0.364 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 38 0.25 196 0.240 596 0.278 1099 0.371 0.3 238 0.293 605 0.279 1233 0.393 0.35 250 0.275 612 0.279 1399 0.421 0.4 263 0.281 625 0.281 1503 0.434 0.45 282 0.292 625 0.278 1517 0.434 0.5 292 0.294 630 0.276 1577 0.442 0.55 302 0.296 632 0.274 1592 0.443 0.6 313 0.300 638 0.274 1611 0.444 表 3 在三種刀具材料下由 C和 n所做的磨損標(biāo)準(zhǔn)圖(濕條件下) KC 313 KC 5010 KC732 Wear criterion (mm) C n C n C n 0.15 167 0.201 497 0.298 881.050 0.332 0.2 187 0.210 619 0.310 1051.96 0.353 0.25 228 0.240 610 0.312 1297.18 0.3930 0.3 244 0.250 628 0.309 1545.25 0.4240 0.35 267 0.260 626 0.300 1782.38 0.4540 0.4 291 0.280 619 0.290 1918.67 0.4680 0.45 338 0.310 615 0.282 2137.96 0.4910 0.5 303 0.310 616 0.279 2477.42 0.5240 0.55 397 0.340 618 0.278 2837.92 0.5540 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 39 0.6 422 0.350 626 0.279 3243.39 0.5830 在這兩種條件下價(jià)值能夠得到提高,另外,濕潤條件 n的價(jià)值要比干燥條件 n的價(jià)值低,直到磨損標(biāo)準(zhǔn)達(dá)到 0.38 以后,干燥條件的 n開始大于濕潤條件的 n。圖 3-11B 可以看出 C在磨損標(biāo)準(zhǔn)所做的圖形中,在干和濕的條件下磨損標(biāo)準(zhǔn)提高時(shí) C 也隨之提高。然而,濕的條件下 C的價(jià)值要比干的條件下高。這證明在整個(gè)切削過程 中通過使用冷卻液提高刀具的壽命和提高磨損標(biāo)準(zhǔn)都可以一直的保護(hù)切削刀具材料。 接下來,圖 3-12A 描述了 KC732 材料在干和濕的條件下 n與磨損標(biāo)準(zhǔn)之間的關(guān)系。磨損價(jià)值隨著 n的提高而提高。此外,濕曲線要比干曲線高。圖3-12B 描述的一個(gè)常數(shù) C和磨損價(jià)值的比例關(guān)系。然而,濕條件的 C曲線比干條件下的曲線高,這表面對于材料 KC732 來說使用冷卻液是有益處的。更為重要的這有利于提高磨損標(biāo)準(zhǔn)。 C的價(jià)值越高,刀具的使用壽命也就變的越高。圖 3-13A 表明冷卻液對刀具性能的影響。因此。 n越高,刀具的使用 壽命就越低。圖 3-13B 可以看出通過使用冷卻液和提高磨損價(jià)值可以降低 C,這說明刀具在濕潤的條件下,刀具的使用壽命比較短。之前研究的都是材料 KC313 和材料 KC732,提高 n就意味著刀具的壽命將被縮短。然而。大幅度的提高濕曲線 C超過干曲線 C的補(bǔ)償下降, KC313 和 KC732 的使用壽命將延長。與次相反。 KC5010 對此正好相反。圖 3-14A 和圖 3-14B 是沒有被碳包裹的情況( KC313)。 他表面了在干和濕的切削條件下不同磨損標(biāo)準(zhǔn)的切削速度的價(jià)值的關(guān)系。 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 40 圖 7 ( a) n與磨損標(biāo)準(zhǔn)為坐標(biāo)建立的關(guān)系圖( 干和濕條件下) 圖 8 ( b) C與磨損標(biāo)準(zhǔn)為坐標(biāo)建立的關(guān)系圖(干和濕條件下) 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 41 圖 3-11 KC313 的以泰勒常數(shù)與磨損標(biāo)準(zhǔn)為坐標(biāo)建立的關(guān)系圖( a) n 與磨損標(biāo)準(zhǔn)為坐標(biāo)建立的關(guān)系圖(干和濕條件下) (b) C 與磨損標(biāo)準(zhǔn)為坐標(biāo)建立的關(guān)系圖(干和濕條件下) 圖 9 (a) n與磨損標(biāo)準(zhǔn)為坐標(biāo)建立的關(guān)系圖(干和濕條件下) 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 42 圖 10 (b) C與磨損標(biāo)準(zhǔn)為坐標(biāo)建立的關(guān)系圖(干和濕條件下) 圖 3-12 KC732 的以泰勒常數(shù)與磨損標(biāo)準(zhǔn)為坐標(biāo)建立的關(guān)系圖( a) n 與磨損標(biāo)準(zhǔn)為坐標(biāo)建立的關(guān)系圖(干和濕條件下) (b) C 與磨損標(biāo)準(zhǔn)為坐標(biāo)建立的關(guān)系圖(干和濕條件下 ) 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 43 圖 11 (a) n 與磨損標(biāo)準(zhǔn)為坐標(biāo)建立的關(guān)系圖(干和濕條件下) 圖 12 (b)C 與磨損標(biāo)準(zhǔn)為坐標(biāo)建立的關(guān)系圖(干和濕條件下) 河南理工大學(xué)萬方科技學(xué)院本科畢業(yè)論文 44 圖 3-13 KC5010 的以泰勒常數(shù)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論