[數(shù)學精品論文]教師的責任――淺談高中數(shù)學教學的減負.doc_第1頁
[數(shù)學精品論文]教師的責任――淺談高中數(shù)學教學的減負.doc_第2頁
[數(shù)學精品論文]教師的責任――淺談高中數(shù)學教學的減負.doc_第3頁
[數(shù)學精品論文]教師的責任――淺談高中數(shù)學教學的減負.doc_第4頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

教 師 的 責 任淺談高中數(shù)學教學的減負引言在當今中國教育界使用最為頻繁的幾個詞匯恐怕非“創(chuàng)新教育、素質(zhì)教育、減負”莫屬,它們?nèi)咧g的關系如何呢?我們認為,“素質(zhì)教育”的核心就是創(chuàng)新教育,而減負是推行創(chuàng)新教育和素質(zhì)教育的基礎,學生過重的學習負擔從何而來?這有多方面的原因,首先是社會原因,其核心是傳統(tǒng)的勞動人事制度。其次是教育體制的原因,其核心是高考制度與學校、教師評價制度。最后是教師方面的原因,人們一談到減負,就會說取消高考問題就能解決,實際上,高考會在相當長的一段時期內(nèi)存在,當然需要不斷改革,尤其使命題更科學。筆者認為學生過重學習負擔的產(chǎn)生,或者換句話說,減輕學生過重的學習負擔,教師有不可推御的責任。人們經(jīng)常談論小學生過重的學習負擔,其原因何在?其表現(xiàn)形式如何?我們認為可用四個字來概括機械重復,中學尤其高中數(shù)學教學中,學生過重的學習負擔主要表現(xiàn)何在?或者說教師該負什么責任?我們認為有兩點值得特別注意,其一是“無節(jié)制的擴展知識面”,其二是“施教不因材”。一、 無節(jié)制的擴展知識面它的含義就是在教學中不斷地補充一些公式、補充一些特殊的解題方法,這在高中數(shù)學教學中幾乎是屢見不鮮尤其是在高三數(shù)學總復習中,正因為如此,高考考試大綱曾多次明確限制這種無限擴充知識面的行為如異面直線之間的距離,異面直線上兩點間的距離公式,利用遞推關系求數(shù)列的通項公式等。在教學中,這些補充的公式或方法往往只對一些極其特殊的問題有效,方法缺乏普遍性久而久之學生認為學數(shù)學就是不斷地套公式、套題型、一但試題稍加變化,學生就無所適從,而且這些補充的眾多公式與方法大多是不加證明的因為時間不允許,更沒有學生探索、分析、比較的發(fā)現(xiàn)過程,學生大多是憑記憶死記它們,這大地增加了學生的記憶負擔,這樣的學生會有想象力和創(chuàng)造性思維嗎?那么這種補充是否有必要呢?有人一定會振振有詞地說補充后解決一些高考題非常有效,的確,我們一些高考命題專家就是上述無節(jié)制補充公式和方法的愛好者,但這絕不是高考命題的主流,即便是無節(jié)制補充公式和方法的愛好者為迎合某個補充公式或某種補充技巧方法的“好題”用我們的基本公式與基本方法是不難解決的.下面就以高中代數(shù)數(shù)列中及解析幾何直線中的幾個例子來加以具體地說明這些例子都有高考的背景。例一、 已知等差數(shù)列an中a2+a3+a10+a11=48,求S12注:這是非常常見的“好題”尤其為那些補充過等差數(shù)列的一條性質(zhì)的人所推崇,這條補充的性質(zhì)就是am+an=ap+aq,其中m+n=p+q用這條性質(zhì)很容易解決這一問題(略去解題過程,因為這是眾所周知的),筆者的觀點是:確定一個等差數(shù)列一般只需要確定首項與公差,因此一般有關等差數(shù)列的問題的解決關鍵是尋找首項與公差,當然這對本題來說不可能,因為只有一個條件,只能列出一個關于首項與公差的方程,此時我們應該如何解決問題,一般地,如何面對未知數(shù)的個數(shù)大于方程的個數(shù),對此我們有兩種選擇,第一、消元;第二、直接研究已知與未知的關系當然是以首項與公差為參變量,解法如下:法一:由已知有:a1+d+a1+2d+a1+9d+ a1+10d=484a1+22d=48, a1=(2411d)/2S12=12a1+611d=12(2411d)/2+611d=624=144法二、仿上法有:2a1+11d=24又S12=12a1+611d6(2a1+11d)624=144 對于上述的解題方法,如果不加思考,任何人都會說法一與法二比常用方法繁,但常用方法的簡單是有代價的,即首先需補充公式,這補充的公式也許對于終身從事數(shù)學教學的高中數(shù)學教師來說是非常顯然的,但對于要學習十幾門學科、學習能力各不相同的高中生來說恐怕就是負擔了,而法一與法二雖然比流行作法復雜,但它對我們是有補償?shù)?,第一是不需要額外補充公式,第二、這兩種方法都有普遍性。例二、 等差數(shù)列an中,若Sm=30,S2m=100,求S3m注:這是一九九六年的全國高考題,為了做這一道高考題,比較常見的方法就是先補充一條性質(zhì)“在等差數(shù)列中,由相鄰的、連續(xù)的、相等的項的和構成的數(shù)列也是一個等差數(shù)列”,一般來說,筆者反對這樣做,實際上用解決等差數(shù)列問題的常規(guī)方法尋找公差與首項的方法就很容易解決,即:這種解法主要是解一個含有參數(shù)m的二元一次方程,這對于一個初中生都是完全可能的。例三、 等比數(shù)列中,Sn=48,S2n=60,求S3n 本題就是上述例2的變種,常見的方法是先補充一條性質(zhì)與例二中補充的類似,筆者建議用解決等比數(shù)列問題的基本方法尋找首項與公比來解決這一問題,即:直接解出a1與q當然可以,但運算較繁考慮到若作換元則有:48X(1Y)及60X(1Y2)解這個方程組有:Y14,X64所以:S3nX(1Y3)641(1/4)363在高中數(shù)學教學中,象上述補充公式或方法的情況非常普遍,像解析幾何直線這一章中,對稱問題因為是一個重要知識點,不少教師就要求學生記住補充公式點P(關于直線AXBYC0的對稱點的坐標公式,稍微仁慈一點的教師就要求學生記住一個點關于直線XYb=0的坐標公式,實際上曲線的對稱問題可以歸結為點的對稱問題,而點的對稱是很容易啟發(fā)學生解決的先求出垂線方程,再求出垂足,然后求出對稱點的坐標當然一個點關于X軸、Y軸的對稱點的坐標由圖易得,根本就不需要補充眾多的公式。最后應該說明,本人并不是一概反對補充一些公式,如果是那樣,就好比只用小米加步槍打天下,對此應該把握如下原則:第一是要有節(jié)制;第二要視學生的情況;第三要視教材的情況。象函數(shù)值域的求法,教科書沒有提供任何求法,教學中要適當補充,第四對于少數(shù)必須補充的公式和方法的探索、發(fā)現(xiàn)、證明,要有學生的參與,不能是直接給出。二、 施教不因材因材施教是最基本的教學原則,但是我們現(xiàn)在的很多做法都是與之背離的,十幾億人口的大國,高中數(shù)學幾乎就是一本教材,高考幾乎就是一張試卷,這在教育發(fā)達的外國幾乎是不可想象的,就是因為這個一刀切,不知把多少有才華的青少年打入差生的行列,時下在中國各種媒體上轟動全國的“韓寒現(xiàn)象”就是一個很好的例子,韓寒是上海一所重點中學的高一年級學生,因為多門學科其中就有數(shù)學不及格退學在家,但同時他又是全國中學生作文大賽的頭獎得主并出版了近二十萬字的長篇小說,他在新民晚報上發(fā)表了不少對教育制度批評的文章,其中他的一句話我對此印象很深,他說“對他本人來說,數(shù)學只要學完初中就夠了”,也許他的話有些偏激,但是這卻道出了一個非常淺顯的道理:由于學生的基礎及智力結構的不同,也由于學生高中畢業(yè)后的去向不同,只有極少數(shù)的學生會繼續(xù)數(shù)學專業(yè)的學習,因此,在高中階段應讓不同的學生學習不同的數(shù)學,當然對我國這樣一個央央大國,要一下子改變教材及高考體制,不是一件容易的事情,筆者要強調(diào)的是,在教材、高考試卷基本不變的情況下我們廣大高中數(shù)學教師,仍然是有所作為的,前幾年就有報道說上海建民中學就開始這方面的探索,他們在不改變傳統(tǒng)班級設置的前提下,高中數(shù)學上課分為A、B、C、D四個層次這也是一種與國際接斬,相反我們一些高中數(shù)學教師,不管自己所教學生的情況,眼睛只瞄準高考數(shù)學一百五十分的試卷,把學生當成容器,這也是造成學生過重學習負擔的一個重要原因,筆者認為,在高中數(shù)學教學中我們應該根據(jù)所教學生的情況,在教學的深度與廣度方面加以區(qū)別,當然要做到這一點這對教師的要求比較高,它不僅需要足夠的勇氣,更需要正確的判斷,要充分了解自己所教的學生,要正確把握教材與高考大綱,由于篇幅所限,這里不準備具體結合教材來說

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論