SaTScan軟件說明書.doc_第1頁
SaTScan軟件說明書.doc_第2頁
SaTScan軟件說明書.doc_第3頁
SaTScan軟件說明書.doc_第4頁
SaTScan軟件說明書.doc_第5頁
已閱讀5頁,還剩114頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

. . . .SaTS can軟件目的SaTS can是一個(gè)自由軟件,分析了空間,時(shí)間和空間的數(shù)據(jù)使用的空間,時(shí)間,或時(shí)空掃描統(tǒng)計(jì)。它是專為以下任何相關(guān)用途:執(zhí)行地理疾病監(jiān)測(cè),檢測(cè)空間或時(shí)空疾病集群,看看他們是否有統(tǒng)計(jì)學(xué)意義。測(cè)試是否是隨機(jī)分布在空間,時(shí)間,或在空間和時(shí)間。評(píng)估的統(tǒng)計(jì)意義的疾病集束警報(bào)器。進(jìn)行前瞻性實(shí)時(shí)或定期監(jiān)測(cè)疾病的早期發(fā)現(xiàn)疾病暴發(fā)。該軟件還可以用于類似的問題在其他領(lǐng)域諸如考古學(xué),天文學(xué),犯罪學(xué),生態(tài)學(xué),經(jīng)濟(jì)學(xué),工程學(xué),遺傳,地理,地質(zhì),歷史,或生態(tài)。數(shù)據(jù)類型和方法SaTS can可用于離散和連續(xù)掃描數(shù)據(jù)。離散掃描統(tǒng)計(jì)數(shù)據(jù)的地理位置在觀察是隨機(jī)和固定的用戶。這些地點(diǎn)可能是實(shí)際位置的意見,如房屋,學(xué)?;蛳伋?,或者它可能是一個(gè)中央位置代表一個(gè)較大的地區(qū),如地理或人口加權(quán)形心郵政區(qū),縣或省。連續(xù)掃描的統(tǒng)計(jì),該地點(diǎn)的意見是隨機(jī)的和可能發(fā)生的任何地方在一個(gè)預(yù)定義的研究領(lǐng)域由用戶定義,如矩形。離散掃描統(tǒng)計(jì),SaTS can使用離散泊松模型,其中一些事件在一個(gè)位置是泊松分布,根據(jù)已知的潛在風(fēng)險(xiǎn)人口;伯努利模型,與0 / 1事件數(shù)據(jù),如案件和控制;時(shí)空置換模式,只使用情況的數(shù)據(jù);多項(xiàng)式模型的分類數(shù)據(jù);一個(gè)序模型,分類數(shù)據(jù);指數(shù)模型的生存時(shí)間數(shù)據(jù)或不刪失變量;正常模式為其他類型的連續(xù)數(shù)據(jù);或空間變化的時(shí)間趨勢(shì)模型,尋找地理區(qū)域異常高或低temportal趨勢(shì)。一個(gè)共同特點(diǎn),所有這些離散掃描統(tǒng)計(jì),地理位置在數(shù)據(jù)可以看出是隨機(jī)和固定的用戶。對(duì)于離散掃描統(tǒng)計(jì),數(shù)據(jù)可以是聚集在普查道,郵編,縣或其他地理水平,或可能有獨(dú)特的坐標(biāo)為每個(gè)觀察。SaTS can調(diào)整的基本均勻的背景人口。它也可以適應(yīng)任何數(shù)量的絕對(duì)變量由用戶提供,以及時(shí)間的趨勢(shì),稱為時(shí)空集群和數(shù)據(jù)丟失。它可以掃描多個(gè)數(shù)據(jù)集的同時(shí)尋找集群發(fā)生在一個(gè)或更多的人。連續(xù)掃描統(tǒng)計(jì),SaTS can采用連續(xù)泊松模型。開發(fā)商和投資者該軟件是由SaTS can庫爾多夫,與信息管理服務(wù)有限公司的財(cái)政支持,SaTS can已收到下列機(jī)構(gòu):國家癌癥研究所,司的癌癥預(yù)防,生物科 1.0,2,2.1 國家癌癥研究所,司的癌癥控制和人口科學(xué),統(tǒng)計(jì)研究和應(yīng)用分公司 3(部分),新(部分),8(部分),v9.0(部分)艾爾弗雷德史隆基金會(huì)通過撥款,為紐約醫(yī)學(xué)??茖W(xué)院(法扎德mostashari,皮) 3(部分),3.1,4,5,5.1 疾病預(yù)防和控制中心,通過協(xié)會(huì)的美國醫(yī)學(xué)院校合作協(xié)議獎(jiǎng)多項(xiàng)mm-0870大師,6.1(部分)。全國兒童健康與發(fā)展,通過給予# ro1hd048852 7,8,9(部分)國家癌癥研究所,司的癌癥流行病學(xué)和遺傳學(xué) v9.0(部分)國立綜合醫(yī)學(xué)科學(xué)研究所,通過建模傳染病劑的研究補(bǔ)助金# u01gm076672 v9.0(部分)他們的經(jīng)濟(jì)支持是極大的贊賞。內(nèi)容SaTS can是發(fā)展商的責(zé)任和不一定反映官方意見的資助相關(guān)主題:統(tǒng)計(jì)方法SaTS can書目相關(guān)主題:統(tǒng)計(jì)方法SaTS can書目下載和安裝檢查SaTS can軟件更新,到SaTS can網(wǎng)址:安裝一個(gè)更新版本,選擇SaTS can下載鏈接。下載后SaTS can安裝可執(zhí)行文件到你的電腦,點(diǎn)擊它的圖標(biāo)和安裝軟件后,一步一步的指示。相關(guān)主題:新版本測(cè)試運(yùn)行在使用自己的數(shù)據(jù),我們建議在一個(gè)樣本數(shù)據(jù)集提供的軟件。使用這些得到主意如何運(yùn)行SaTS can。執(zhí)行測(cè)試:1。應(yīng)用程序圖標(biāo)上點(diǎn)擊SaTS can。2。點(diǎn)擊“打開保存的會(huì)話。3。選擇一個(gè)參數(shù)文件,例如“納米帶”(寶。泊松模型,時(shí)空和空間變化的時(shí)間趨勢(shì):腦腫瘤的發(fā)病率在新墨西哥案例檔案:nm.cas格式: = 1縣 年齡組性別人口:nm.pop格式: 年齡組性別nm.geo坐標(biāo)文件:格式: 研究期間:1973至1991年聚集:32縣精密案件倍:年直角坐標(biāo):# 1變量,年齡組:1 = 0 - 4年,2 = 5 - 9年,18 = 85 +年# 2變量,性別:男1,女2 =人口:1973,1982,1991年數(shù)據(jù)來源:新墨西哥季節(jié)能效比腫瘤登記處這是一個(gè)濃縮版的更完整的數(shù)據(jù)集的人口為每年1973至1991,和種族的三分之一個(gè)變量。完整的數(shù)據(jù)集可以發(fā)現(xiàn)在:/datasets/伯努利模型,純粹的空間:兒童白血病和淋巴瘤的發(fā)病率在亨伯賽德案例檔案:nhumberside.cas格式: #位置編號(hào)控制文件:nhumberside.ctl格式: nhumberside.geo坐標(biāo)文件:格式: 研究期間:1974-1986控制:隨機(jī)選擇從出生登記聚集:191郵政編碼(最多只有一個(gè)單一的個(gè)體)精度的情況和控制時(shí)間:無直角坐標(biāo):變量:沒有數(shù)據(jù)來源:雷卡特萊特和弗里達(dá)亞力山大博士。報(bào)告由J .庫茲克和愛德華茲,英國皇家統(tǒng)計(jì)學(xué)會(huì),73-104乙:52,1990這和其他數(shù)據(jù)集可以被發(fā)現(xiàn):www.satscan組織/數(shù)據(jù)/。時(shí)空置換模式:醫(yī)院的急診室住院因發(fā)燒在紐約市醫(yī)院案例檔案:nycfever.cas格式: nycfever.geo坐標(biāo)文件:格式: 拉鏈緯度經(jīng)度研究期間:2001年11月1日2001年11月24日聚集:郵編地區(qū)例:天倍精度坐標(biāo):緯度/經(jīng)度變量:沒有數(shù)據(jù)來源:紐約市衛(wèi)生局這和其他數(shù)據(jù)集可以被發(fā)現(xiàn):/datasets/序模型,純粹的空間正規(guī)教育水平在馬里蘭案例檔案:marylandeducation.cas格式: 類# #個(gè)人marylandeducation.geo坐標(biāo)文件:格式: 定位標(biāo)識(shí)緯度經(jīng)度研究期間:2000聚集:24各縣、縣級(jí)精度的情況:無坐標(biāo):緯度/經(jīng)度變量:沒有類別:1 = 9年的學(xué)校,2 = 9 +年而不是高中,3 = 4 =高中或同等學(xué)歷,本科或以上學(xué)歷數(shù)據(jù)來源:美國人口普查局:教育信息來自于長期普查2000表格,填寫的1 / 6戶。這和其他數(shù)據(jù)集可以被發(fā)現(xiàn):/datasets/注意:只有人25歲及以上被列入數(shù)據(jù)。對(duì)于每一個(gè)縣,人口普查提供信息的人的百分不同層次的正規(guī)教育。一些個(gè)人的報(bào)告不同的教育水平在每一個(gè)縣估計(jì)這一比例倍的總?cè)丝谀挲g25 +六分反映1 / 6采樣率的長期普查表。指數(shù)模型,時(shí)空:人為的生存數(shù)據(jù)案例檔案:survivalfake.cas格式: 生存時(shí)間檢查survivalfake.geo坐標(biāo)文件:格式: 研究期間:2000 - 2005聚集:5個(gè)地點(diǎn)精度的診斷:一年的時(shí)間精密的生存/審查時(shí)間:一天直角坐標(biāo):變量:沒有數(shù)據(jù)來源:人為制造的數(shù)據(jù)。相關(guān)主題:測(cè)試運(yùn)行,輸入數(shù)據(jù)。正常模式,純粹的空間:人為制造的連續(xù)數(shù)據(jù)案例檔案:normalfake.cas格式: #個(gè)人體重增加normalfake.geo坐標(biāo)文件:格式: 研究期間:2006聚集:26個(gè)地點(diǎn)直角坐標(biāo):變量:沒有數(shù)據(jù)來源:人為制造的數(shù)據(jù)伯努利模型與伯努利模型,有案件和非案件所代表的0 / 1變。這些變量可能代表人或無病,或人與不同類型的疾病,如早期和晚期乳腺癌。它們可能反映和控制的情況下一個(gè)大的人口,或他們可能構(gòu)成人口作為一個(gè)整體。無論什么情況可能是,這些變量將被命名為例,控制整個(gè)用戶指南,和他們的總?cè)丝趯⒈幻麨?。伯努利的?shù)據(jù)可以分析與純粹的時(shí)間,純粹的空間或時(shí)空掃描統(tǒng)計(jì)。例如:為伯努利模型,案件可能是新生兒的出生缺陷,而控制所有新生兒無出生缺陷。伯努利模型需要的信息的位置,設(shè)置和控制的情況下,提供SaTS can使用情況,控制和協(xié)調(diào)文件。不同的地點(diǎn)可能被指定為每一個(gè)案件和控制,或可能是數(shù)據(jù)匯總為國家,省,縣,區(qū),人口普查傳單,郵政編碼區(qū),學(xué)校,家庭,等等,與多個(gè)案件和控制每個(gè)數(shù)據(jù)的位置。做一個(gè)時(shí)間或時(shí)空分析,它必須有一個(gè)時(shí)間為每一個(gè)案件和控制以及。相關(guān)主題:案件檔案控制文件坐標(biāo)文件似然比檢驗(yàn)分析表概率模型的比較方法的論文分享到 翻譯結(jié)果重試抱歉,系統(tǒng)響應(yīng)超時(shí),請(qǐng)稍后再試 支持中英、中日在線互譯 支持網(wǎng)頁翻譯,在輸入框輸入網(wǎng)頁地址即可 提供一鍵清空、復(fù)制功能、支持雙語對(duì)照查看,使您體驗(yàn)更加流暢離散泊松模型與離散泊松模型,案件的數(shù)量在每個(gè)位置是泊松分布。零假設(shè)下,當(dāng)有任何變量,預(yù)期的案件數(shù)量在各地區(qū)的人口比例大小,或在該地區(qū)的人。泊松數(shù)據(jù)可以分析與純粹的時(shí)間,純粹的空間,時(shí)空掃描和空間變化的時(shí)間趨勢(shì)統(tǒng)計(jì)。例如:為離散泊松模型,案件可能是中風(fēng)的發(fā)生,而人口是結(jié)合一些人來住,計(jì)算“1”,有人居住在該地區(qū)的整個(gè)時(shí)間段,和“1 / 2”垂死的人或移動(dòng)在中間的一段時(shí)間。離散泊松模型需要情況和人口數(shù)為一組數(shù)據(jù)的位置,如縣,教區(qū),人口普查傳單,或郵政編碼地區(qū),以及地理坐標(biāo)為每個(gè)這些地點(diǎn)。這些需要提供SaTS can使用情況,人口和坐標(biāo)文件。人口數(shù)據(jù)不需要指定持續(xù)時(shí)間,但只在一個(gè)或多個(gè)具體的普查時(shí)間。倍之間,SaTS can做線性插值的基礎(chǔ)上的人口在普查時(shí)立即出發(fā),后立即。時(shí)代前的第一次人口普查時(shí),人口規(guī)模是相當(dāng)于人口規(guī)模在普查時(shí)間,和時(shí)間后,最近一次人口普查時(shí),相當(dāng)于做。獲得人口大小為特定地點(diǎn)和時(shí)間內(nèi),人口規(guī)模,上述定義,是綜合性的時(shí)間期限問題。相關(guān)主題:分析表案件檔案連續(xù)泊松模型坐標(biāo)文件似然比檢驗(yàn)人口檔案概率模型的比較方法的論文時(shí)空置換模式時(shí)空置換模型只需要數(shù)據(jù)的情況下,信息的空間位置和時(shí)間為每一個(gè)案件,沒有信息需要控制或背景的人口處于危險(xiǎn)。觀察到的一些案件中的一組比本來預(yù)計(jì)如果空間和時(shí)間地點(diǎn),所有病例均相互獨(dú)立,因此沒有時(shí)空互動(dòng)。這是,有一組在一個(gè)地理區(qū)域,在某一特定時(shí)間內(nèi),該地區(qū)有較高比例的情況下,在這段時(shí)間比其他地區(qū)。這意味著,如果,在一個(gè)特定的一周,所有的地理區(qū)域有兩倍的案件數(shù)量比正常,并沒有對(duì)這些地區(qū)構(gòu)成一個(gè)群。另一方面,如果在這一周,一個(gè)地理區(qū)域的兩倍數(shù)量的情況下比較正常,而其他地區(qū)正常數(shù)量的情況下,會(huì)有一組在第一區(qū)。時(shí)空置換模型自動(dòng)調(diào)整為純粹的空間和純粹顳集群。因此,不存在純粹的時(shí)間或空間版本的這一模式。例如:在時(shí)空置換模型,案件可能是每天發(fā)生的救護(hù)車派遣中風(fēng)患者。重要的是要認(rèn)識(shí)到,時(shí)空置換群可能是由于要么增加疾病的風(fēng)險(xiǎn),或?qū)Σ煌乩矸N群分布在不同的時(shí)間,例如,在一些地區(qū)的人口增長速度比其他。這通常不是一個(gè)問題,如果總時(shí)間不超過一年。然而,建議用戶非常小心,當(dāng)使用這種方法的數(shù)據(jù)跨越幾年。如果背景人口的增加或下降速度比在另一些地區(qū),有風(fēng)險(xiǎn)的人口變化的偏見,這可能產(chǎn)生偏見的P -值在研究期間長于幾年。例如,如果一個(gè)新的大型社區(qū)的發(fā)展,會(huì)增加情況下,僅僅是因?yàn)槿丝诘脑黾?,并且只使用?shù)據(jù)的情況下,時(shí)空置換模型不能區(qū)分增加由于當(dāng)?shù)厝丝诘脑黾优c增加的疾病的風(fēng)險(xiǎn)。如同所有的時(shí)空互動(dòng)方法,這主要是關(guān)注在研究期間長于幾年(曼特爾,癌癥研究,27:209-2201967;庫爾多夫和hjalmars,生物識(shí)別技術(shù),9:621-6301999,P 10)。如果人口的增加(或減少)是相同的整個(gè)研究區(qū)域,這是好的,并不會(huì)導(dǎo)致偏見的結(jié)果。分享到 翻譯結(jié)果重試抱歉,系統(tǒng)響應(yīng)超時(shí),請(qǐng)稍后再試 支持中英、中日在線互譯 支持網(wǎng)頁翻譯,在輸入框輸入網(wǎng)頁地址即可 提供一鍵清空、復(fù)制功能、支持雙語對(duì)照查看,使您體驗(yàn)更加流暢多項(xiàng)式模型用多項(xiàng)式模型,每個(gè)觀察是一個(gè)案例,每個(gè)案例屬于幾個(gè)類別之一。多項(xiàng)式的掃描統(tǒng)計(jì)評(píng)估是否有任何集群的分布情況是不同的從其他地區(qū)的研究。例如,可能有更高比例的案件類型1和2和較低的比例例3型,比例的情況下,4型是相同的群集外的。如果只有2大類,序的模式是相同的伯努利模型,其中一個(gè)范疇的案件和其他類別的控制。案件中的多項(xiàng)式模型可能是一個(gè)樣本,從更大的人口也可能構(gòu)成一套完整的意見。多項(xiàng)數(shù)據(jù)可以分析與純粹的時(shí)間,純粹的空間或時(shí)空掃描統(tǒng)計(jì)。例如:為多項(xiàng)式模型,數(shù)據(jù)可以由每個(gè)人患有腦膜炎,與五個(gè)不同的類別,代表五個(gè)不同的無性系物的疾病。多項(xiàng)式的掃描統(tǒng)計(jì)將同時(shí)尋找高或低集群的任何的克隆物,或一組照片,調(diào)整整體的地理分布的疾病。多重比較中所固有的許多種類占計(jì)算的P -值。多項(xiàng)式模型需要的信息的位置,分別在每個(gè)類別。一個(gè)獨(dú)特的位置可能被指定為每一個(gè)案件,或可能是數(shù)據(jù)匯總為國家,省,縣,區(qū),人口普查傳單,郵政編碼區(qū),學(xué)校,家庭,等等,與多個(gè)案件在同一地點(diǎn)。做一個(gè)時(shí)間或時(shí)空分析,它必須有一個(gè)時(shí)間為每一個(gè)案件等。用多項(xiàng)式模型,這是沒有必要指定一個(gè)搜索為高或低的集群,由于沒有層次的類別,但在輸出顯示什么類型更突出的集群內(nèi)。該命令或索引的類別并不影響分析中的聚類發(fā)現(xiàn),但它可能影響隨機(jī)用來計(jì)算p -值。Ordinal Model With the ordinal model, each observation is a case, and each case belongs to one of several ordinal categories. If there are only two categories, the ordinal model is identical to the Bernoulli model, where one category represents the cases and the other category represent the controls in the Bernoulli model. The cases in the ordinal model may be a sample from a larger population or they may constitute a complete set of observations. Ordinal data can be analyzed with the purely temporal, the purely spatial or the space-time scan statistics. Example: For the ordinal model, the data may consist of everyone diagnosed with breast cancer during a ten-year period, with three different categories representing early, medium and late stage cancer at the time of diagnosis. The ordinal model requires information about the location of each case in each category. Separate locations may be specified for each case, or the data may be aggregated for states, provinces, counties, parishes, census tracts, postal code areas, school districts, households, etc, with multiple cases in the same or different categories at each data location. To do a temporal or space-time analysis, it is necessary to have a time for each case as well. With the ordinal model it is possible to search for high clusters, with an excess of cases in the high-valued categories, for low clusters with an excess of cases in the low-valued categories, or simultaneously for both types of clusters. Reversing the order of the categories has the same effect as changing the analysis from high to low and vice versa. 序模型與序模型,每個(gè)觀察是一個(gè)案例,每個(gè)案例屬于一個(gè)序數(shù)類。如果只有2大類,序的模式是相同的伯努利模型,其中一個(gè)范疇的案件和其他類別的控制的伯努利模型。案件的序模型可能是一個(gè)樣本,從更大的人口也可能構(gòu)成一套完整的意見。序數(shù)數(shù)據(jù)可以分析與純粹的時(shí)間,純粹的空間或時(shí)空掃描統(tǒng)計(jì)。例如:為序模型,數(shù)據(jù)可以由每個(gè)人診斷出患有乳腺癌,在10年期間,有三個(gè)不同類別的代表早期,中期和晚期癌癥的診斷時(shí)間。序模型需要的信息的位置,分別在每個(gè)類別。不同的地點(diǎn)可能被指定為每一個(gè)案件,或可能是數(shù)據(jù)匯總為國家,省,縣,區(qū),人口普查傳單,郵政編碼區(qū),學(xué)校,家庭,等等,多例相同或不同的類別,每個(gè)數(shù)據(jù)的位置。做一個(gè)時(shí)間或時(shí)空分析,它必須有一個(gè)時(shí)間為每一個(gè)案件等。與序模型,有可能尋求高集群,一個(gè)多余的情況下在高價(jià)值,低集群與多余的情況下在低價(jià)值的類別,或同時(shí)有兩種類型的集群。扭轉(zhuǎn)秩序的類別有相同效果的分析從高到低,反之亦然。Exponential Model The exponential model is designed for survival time data, although it could be used for other continuous type data as well. Each observation is a case, and each case has one continuous variable attribute as well as a 0/1 censoring designation. For survival data, the continuous variable is the time between diagnosis and death or depending on the application, between two other types of events. If some of the data is censored, due to loss of follow-up, the continuous variable is then instead the time between diagnosis and time of censoring. The 0/1 censoring variable is used to distinguish between censored and non-censored observations. Example: For the exponential model, the data may consist of everyone diagnosed with prostate cancer during a ten-year period, with information about either the length of time from diagnosis until death or from diagnosis until a time of censoring after which survival is unknown. When using the temporal or space-time exponential model for survival times, it is important to realize that there are two very different time variables involved. The first is the time the case was diagnosed, and that is the time that the temporal and space-time scanning window is scanning over. The second is the survival time, that is, time between diagnosis and death or for censored data the time between diagnosis and censoring. This is an attribute of each case, and there is no scanning done over this variable. Rather, we are interested in whether the scanning window includes exceptionally many cases with a small or large value of this attribute. It is important to note, that while the exponential model uses a likelihood function based on the exponential distribution, the true survival time distribution must not be exponential and the statistical inference (p-value) is valid for other survival time distributions as well. The reason for this is that the randomization is not done by generating observations from the exponential distribution, but rather, by permuting the space-time locations and the survival time/censoring attributes of the observations. 指數(shù)模型該模型的目的是為生存時(shí)間數(shù)據(jù),雖然也可以用其他連續(xù)型數(shù)據(jù)以及。每個(gè)觀察是一個(gè)案例,每個(gè)案例都有一個(gè)連續(xù)變量的屬性,以及0 / 1審查指定。生存數(shù)據(jù),連續(xù)變量是時(shí)間之間的診斷和死亡或根據(jù)應(yīng)用的不同,兩國之間的其他類型的事件。如果一些數(shù)據(jù)審查,由于損失的后續(xù)行動(dòng),連續(xù)變量則相反,時(shí)間之間的診斷和審查時(shí)。0 / 1審查變數(shù)是用來區(qū)分審查,審查意見。例如:為指數(shù)模型,數(shù)據(jù)可以由每個(gè)人患有前列腺癌在10年期間,與有關(guān)信息的時(shí)間長度從診斷,直至死亡或從診斷到時(shí)間審查后,生存是未知的。當(dāng)使用時(shí)間或時(shí)空指數(shù)模型的生存時(shí)間,重要的是要認(rèn)識(shí)到,有一個(gè)非常不同的時(shí)間變量。首先是時(shí)間的情況下被診斷,這是時(shí)間,時(shí)間和空間的掃描窗口的掃描。二是生存時(shí)間,即,時(shí)間之間的診斷和死亡或刪失數(shù)據(jù)的時(shí)間之間的診斷和審查。這是一個(gè)屬性的每一個(gè)案件,并有沒有完成這個(gè)變量。相反,我們感興趣的是掃描窗口,包括異常的許多情況下,大型或小型的屬性的值。需要注意的是,雖然指數(shù)模型使用似然函數(shù)的指數(shù)分布,真實(shí)的生存時(shí)間分布不能指數(shù)和統(tǒng)計(jì)推斷(P值)是有效的其他生存時(shí)間分布以及。這是因?yàn)?,不是隨機(jī)產(chǎn)生所做的觀測(cè),指數(shù)分布,而是通過置換,時(shí)空位置和生存時(shí)間/審查屬性的意見。Normal Model The normal model is designed for continuous data. For each individual or for each observation, called a case, there is a single continuous attribute that may be either negative or positive. The model can also be used for ordinal data when there are many categories. That is, different cases are allowed to have the same attribute value. Example: For the normal model, the data may consist of the birth weight and residential census tract for all newborns, with an interest in finding clusters with lower birth weight. One individual is then a case. Alternatively, the data may consist of the average birth weight in each census tract. It is then the census tract that is the case, and it is important to use the weighted normal model, since each average will have a different variance due to a different number of births in each tract. It is important to note that while the normal model uses a likelihood function based on the normal distribution, the true distribution of the continuous attribute must not be normal. The statistical inference (p-value) is valid for any continuous distribution. The reason for this is that the randomization is not done by generating simulated data from the normal distribution, but rather, by permuting the space-time locations and the continuous attribute (e.g. birth weight) of the observations. While still being formally valid, the results can be greatly influenced by extreme outliers, so it may be wise to truncate such observations before doing the analysis. In the standard normal model, it is assumed that each observation is measured with the same variance. That may not always be the case. For example, if an observation is based on a larger sample in one location and a smaller sample in another, then the variance of the uncertainty in the estimates will be larger for the smaller sample. If the reliability of the estimates differs, one should instead use the weighted normal scan statistic that takes these unequal variances into account. The weighted version is obtained in SaTScan by simply specifying a weight for each observation as an extra column in the input file. This weight may for example be proportional to the sample size used for each estimate or it may be the inverse of the variance of the observation. If all values are multiplied with or added to the same constant, the statistical inference will not change, meaning that the same clusters with the same log likelihoods and p-values will be found. Only the estimated means and variances will differ. If the weight is the same for all observations, then the weighted normal scan statistic will produce the same results as the standard normal version. If all the weights are multiplied by the same constant, the results will not change. 正常模式正常模式是用于連續(xù)數(shù)據(jù)。每個(gè)人或每個(gè)觀察,稱為例,有一個(gè)單一的連續(xù)屬性可以是正的或負(fù)的。該模型還可以用來序的數(shù)據(jù)時(shí),有許多類別。這是不同的情況下,允許具有相同的屬性值。例如:為正常模式,數(shù)據(jù)可能包括出生體重及住宅普查道的所有新生兒,有興趣的調(diào)查組的低出生體重。一個(gè)人是一個(gè)情況。另外,數(shù)據(jù)可能包括平均出生體重在每個(gè)普查道。它是那么的普查道,“事件”,而且重要的是使用加權(quán)正常模式,因?yàn)槊總€(gè)平均會(huì)有不同的差異,由于不同數(shù)量的出生在每個(gè)道。值得注意的是,雖然正常模型使用似然函數(shù)的正態(tài)分布,真實(shí)分布的連續(xù)屬性必須是不正常的。統(tǒng)計(jì)推斷(P值)是有效的任何連續(xù)分布。這是因?yàn)?,不是隨機(jī)產(chǎn)生所做的模擬數(shù)據(jù)的正態(tài)分布,但相反,排樣的時(shí)空位置和連續(xù)屬性(例如出生體重)的意見。同時(shí)還被正式有效,結(jié)果可以大大影響極端離群,所以它可能是明智的截?cái)?,這樣的意見之前做分析。在標(biāo)準(zhǔn)模型中,假定每個(gè)觀察是相同的測(cè)量方差。這可能并非總是如此。例如,如果一個(gè)觀察的基礎(chǔ)上更大的樣本在一個(gè)位置和一個(gè)較小的樣本在另一個(gè),然后方差的不確定性的估計(jì)將是更大的小樣本。如果可靠性估計(jì)不同,應(yīng)使用加權(quán)正常的掃描統(tǒng)計(jì),考慮到這些不平等的差異。加權(quán)版本獲得SaTS can通過簡(jiǎn)單地指定一個(gè)體重為每個(gè)觀察作為一個(gè)額外的列中輸入文件。這個(gè)重量,例如可能是成正比的樣本大小用于每一個(gè)估計(jì),也可以是逆差額觀察。如果所有的值乘以或添加到同一常數(shù),統(tǒng)計(jì)推斷是不會(huì)改變的,即同一簇具有相同的日志可能性和P -值會(huì)被發(fā)現(xiàn)。只有估計(jì)均值和方差將不同。如果重量是相同的所有意見,然后加權(quán)正常掃描統(tǒng)計(jì)會(huì)產(chǎn)生相同的結(jié)果的標(biāo)準(zhǔn)版本。如果所有的重量乘以同一常數(shù),結(jié)果不會(huì)改變。分享到 翻譯結(jié)果重試抱歉,系統(tǒng)響應(yīng)超時(shí),請(qǐng)稍后再試 支持中英、中日在線互譯 支持網(wǎng)頁翻譯,在輸入框輸入網(wǎng)頁地址即可 提供一鍵清空、復(fù)制功能、支持雙語對(duì)照查看,使您體驗(yàn)更加流暢Continuous Poisson Model All the models described above are based on data observed at discrete locations that are considered to be non-random, as defined by a regular or irregular lattice of location points. That is, the locations of the observations are considered to be fixed, and we evaluate the spatial randomness of the observation conditioning on the lattice. Hence, those are all versions of what are called discrete scan statistics. In a continuous scan statistics, observations may be located anywhere within a study area, such as a square or rectangle. The stochastic aspect of the data consists of these random spatial locations, and we are interested to see if there are any clusters that are unlikely to occur if the observations where independently and randomly distributed across the study area. Under the null hypothesis, the observations follow a homogeneous spatial Poisson process with constant intensity throughout the study area, with no observations falling outside the study area. Example: The data may consist of the location of bird nests in a square kilometer area of a forest. The interest may be to see whether the bird nests are randomly distributed spatially, or in other words, whether there are clusters of bird nests or whether they are located independently of each other. In SaTScan, the study area can be any collection of convex polygons, which are convex regions bounded by any number straight lines. Triangles, squares, rectangles, rhombuses, pentagons and hexagons are all examples of convex polygons. In the simplest case, there is only one convex polygon, but the study area can also be the union of multiple convex polygons. If the study area is not convex, divide it into multiple convex polygons and define each one separately. The study area does not need to be contiguous, and may for example consist of five different islands. The analysis is conditioned on the total number of observations in the data set. Hence, the scan statistic simply evaluates the spatial distribution of the observation, but not the number of observations. The likelihood function used as the test statistic is the same as for the Poisson model for the discrete scan statistic, where the expected number of cases is equal to the total number of observed observations, times the size of the scanning window, divided by the size of the total study area. As such, it is a special case of the variable window size scan statistic described by Kulldorff (1997). When the scanning window extends outside the study area, the expected count is still based on the full size of the circle, ignoring the fact that some parts of the circle have zero expected counts. This is to avoid strange non-circular clusters at the border of the study area. Since the analysis is based on Monte Carlo randomizations, the p-values are automatically adjusted for these boundary effects. The reported expected counts are based on the full circle though, so the Obs/Exp ratios provided should be viewed as a lower bound on the true value whenever the circle extends outside the spatial study region. The continuous Poisson model can only be used for purely spatial data. It uses a circular scanning window of continuously varying radius up to a maximum specified by the user. Only circles centered on one of the observations are considered, as specified in the coordinates file. If the optional grid file is provided, the circles are instead centered on the coordinates specified in that file. The continuous Poisson model has not been implemented to be used with an elliptic window. 連續(xù)泊松模型所有的模型描述是基于上述數(shù)據(jù)觀察離散地點(diǎn)被認(rèn)為是隨機(jī)的,所確定的規(guī)則或不規(guī)則格點(diǎn)的位置。就是說,該地點(diǎn)的意見被認(rèn)為是固定的,和我們?cè)u(píng)估的空間隨機(jī)性的觀察空調(diào)格。因此,這些都是什么版本被稱為離散掃描統(tǒng)計(jì)。在連續(xù)掃描統(tǒng)計(jì),觀察可能位于內(nèi)的任何一個(gè)研究領(lǐng)域,如正方形或矩形。隨機(jī)方面的數(shù)據(jù)由隨機(jī)空間位置,和我們有興趣,看看是否有任何群是不可能發(fā)生,如果意見是獨(dú)立隨機(jī)分布在研究區(qū)。零假設(shè)下,觀察遵循同質(zhì)空間泊松過程的光強(qiáng)恒定在整個(gè)研究區(qū),沒有意見以外的研究領(lǐng)域。例如:數(shù)據(jù)可能包括位置的鳥巢一平方公里面積的森林。興趣可以看看鳥巢是隨機(jī)分布的空間,或在其他的話,是否有集群筑巢,或它們是否位于相互獨(dú)立。在SaTS can,研究區(qū)可以是任何集合的凸多邊形,凸區(qū)域

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論