2011高考概率統(tǒng)計(jì)(一)).doc_第1頁(yè)
2011高考概率統(tǒng)計(jì)(一)).doc_第2頁(yè)
2011高考概率統(tǒng)計(jì)(一)).doc_第3頁(yè)
2011高考概率統(tǒng)計(jì)(一)).doc_第4頁(yè)
2011高考概率統(tǒng)計(jì)(一)).doc_第5頁(yè)
已閱讀5頁(yè),還剩7頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

2011高考概率統(tǒng)計(jì)(一)一.選擇填空1. 從正六邊形的6個(gè)頂點(diǎn)中隨機(jī)選擇4個(gè)頂點(diǎn),則以它們作為頂點(diǎn)的四邊形是矩形的概率等于(A) (B) (C) (D) 2盒中裝有形狀、大小完全相同的5個(gè)球,其中紅色球3個(gè),黃色球2個(gè)。若從中隨機(jī)取出2個(gè)球,則所取出的2個(gè)球顏色不同的概率等于_。3如圖,矩形ABCD中,點(diǎn)E為邊CD的中點(diǎn)。若在矩形ABCD內(nèi)部隨機(jī)取一個(gè)點(diǎn)Q,則點(diǎn)Q取自ABE內(nèi)部的概率等于A B C DKA1A24.如圖,用三類(lèi)不同的元件連接成一個(gè)系統(tǒng),正常工作且至少有一個(gè)正常工作時(shí),系統(tǒng)正常工作.已知正常工作的概率依次為、,則系統(tǒng)正常工作的概率為A. B. C. D. 5.已知隨機(jī)變量服從正態(tài)分布,且,則A. B. C. D. 6.甲、乙兩隊(duì)進(jìn)行排球決賽現(xiàn)在的情形是甲隊(duì)只要再贏一局就獲冠軍,乙隊(duì)需要再贏兩局才能得冠軍.若兩隊(duì)勝每局的概率相同,則甲隊(duì)獲得冠軍的概率為A. B. C. D.7.某數(shù)學(xué)老師身高176cm,他爺爺、父親和兒子的身高分別是173cm、170cm、和182cm.因兒子的身高與父親的身高有關(guān),該老師用線(xiàn)性回歸分析的方法預(yù)測(cè)他孫子的身高為 cm.8為了解籃球愛(ài)好者小李的投籃命中率與打籃球時(shí)間之間的關(guān)系,下表記錄了小李某月1號(hào)到5號(hào)每天打籃球時(shí)間x(單位:小時(shí))與當(dāng)天投籃命中率y 之間的關(guān)系:時(shí)間12345命中率0405060604小李這5天的平均投籃命中率為_(kāi);用線(xiàn)性回歸分析的方法,預(yù)測(cè)小李每月6號(hào)打籃球6小時(shí)的投籃命中率為_(kāi)二.解答題1.某地最近十年糧食需求量逐年上升,下表是部分統(tǒng)計(jì)數(shù)據(jù):年份20022004200620082010需求量(萬(wàn)噸)236246257276286()利用所給數(shù)據(jù)求年需求量與年份之間的回歸直線(xiàn)方程;()利用()中所求出的直線(xiàn)方程預(yù)測(cè)該地2012年的糧食需求量。2.以下莖葉圖記錄了甲、乙兩組各四名同學(xué)的植樹(shù)棵數(shù)。乙組記錄中有一個(gè)數(shù)據(jù)模糊,無(wú)法確認(rèn),在圖中以X表示。(1)如果,求乙組同學(xué)植樹(shù)棵數(shù)的平均數(shù)和方差;(2)如果,分別從甲、乙兩組中隨機(jī)選取一名同學(xué),求這兩名同學(xué)的植樹(shù)總棵數(shù)Y的分布列和數(shù)學(xué)期望。3.(本小題滿(mǎn)分13分)某產(chǎn)品按行業(yè)生產(chǎn)標(biāo)準(zhǔn)分成8個(gè)等級(jí),等級(jí)系數(shù)X依次為1,2,8,其中X5為標(biāo)準(zhǔn)A,X為標(biāo)準(zhǔn)B,已知甲廠(chǎng)執(zhí)行標(biāo)準(zhǔn)A生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價(jià)為6元/件;乙廠(chǎng)執(zhí)行標(biāo)準(zhǔn)B生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價(jià)為4元/件,假定甲、乙兩廠(chǎng)得產(chǎn)品都符合相應(yīng)的執(zhí)行標(biāo)準(zhǔn)(I)已知甲廠(chǎng)產(chǎn)品的等級(jí)系數(shù)X1的概率分布列如下所示:5678P04ab01且X1的數(shù)字期望EX1=6,求a,b的值;(II)為分析乙廠(chǎng)產(chǎn)品的等級(jí)系數(shù)X2,從該廠(chǎng)生產(chǎn)的產(chǎn)品中隨機(jī)抽取30件,相應(yīng)的等級(jí)系數(shù)組成一個(gè)樣本,數(shù)據(jù)如下: 3 5 3 3 8 5 5 6 3 4 6 3 4 7 5 3 4 8 5 38 3 4 3 4 4 7 5 6 7用這個(gè)樣本的頻率分布估計(jì)總體分布,將頻率視為概率,求等級(jí)系數(shù)X2的數(shù)學(xué)期望 (III)在(I)、(II)的條件下,若以“性?xún)r(jià)比”為判斷標(biāo)準(zhǔn),則哪個(gè)工廠(chǎng)的產(chǎn)品更具可購(gòu)買(mǎi)性?說(shuō)明理由注:(1)產(chǎn)品的“性?xún)r(jià)比”=; (2)“性?xún)r(jià)比”大的產(chǎn)品更具可購(gòu)買(mǎi)性4(本小題滿(mǎn)分12分)某日用品按行業(yè)質(zhì)量標(biāo)準(zhǔn)分成五個(gè)等級(jí),等級(jí)系數(shù)X依次為1、2、3、4、5?,F(xiàn)從一批該日用品中隨機(jī)抽取20件,對(duì)其等級(jí)系數(shù)進(jìn)行統(tǒng)計(jì)分析,得到頻率分布表如下:X12345fa0.20.45bc()若所抽取的20件日用品中,等級(jí)系數(shù)為4的恰有3件,等級(jí)系數(shù)為5的恰有2件;求a、b、c的值。()在()的條件下,將等級(jí)系數(shù)為4的3件記為x1、x2、x3,等級(jí)系數(shù)為5的2件記為y1、y2?,F(xiàn)從這五件日用品中任取2件(假定每件日用品被取出的可能性相同),寫(xiě)出所有可能的結(jié)果,并求這兩件日用品的等級(jí)系數(shù)恰好相等的概率。5.(本小題滿(mǎn)分13分)為了解甲、乙兩廠(chǎng)的產(chǎn)品質(zhì)量,采用分層抽樣的方法從甲、乙兩廠(chǎng)生產(chǎn)的產(chǎn)品中分別抽取14件和5件,測(cè)量產(chǎn)品中微量元素x,y的含量(單位:毫克).下表是乙廠(chǎng)的5件產(chǎn)品的測(cè)量數(shù)據(jù):編號(hào)12345x169178166175180y7580777081(1)已知甲廠(chǎng)生產(chǎn)的產(chǎn)品共98件,求乙廠(chǎng)生產(chǎn)的產(chǎn)品數(shù)量;(2)當(dāng)產(chǎn)品中的微量元素x,y滿(mǎn)足x175且y75時(shí),該產(chǎn)品為優(yōu)等品,用上述樣本數(shù)據(jù)估計(jì)乙廠(chǎng)生產(chǎn)的優(yōu)等品的數(shù)量;(3)從乙廠(chǎng)抽出的上述5件產(chǎn)品中,隨即抽取2件,求抽取的2件產(chǎn)品中優(yōu)等品數(shù)的分布列及其均值(即數(shù)學(xué)期望). 6(本小題滿(mǎn)分13分)在某次測(cè)驗(yàn)中,有6位同學(xué)的平均成績(jī)?yōu)?5分。用xn表示編號(hào)為n(n=1,2,6)的同學(xué)所得成績(jī),且前5位同學(xué)的成績(jī)?nèi)缦拢壕幪?hào)n12345成績(jī)xn7076727072(1)求第6位同學(xué)的成績(jī)x6,及這6位同學(xué)成績(jī)的標(biāo)準(zhǔn)差s;(2)從前5位同學(xué)中,隨機(jī)地選2位同學(xué),求恰有1位同學(xué)成績(jī)?cè)趨^(qū)間(68,75)中的概率。7. 某商店試銷(xiāo)某種商品20天,獲得如下數(shù)據(jù):日銷(xiāo)售量(件)0123頻數(shù)1595試銷(xiāo)結(jié)束后(假設(shè)該商品的日銷(xiāo)售量的分布規(guī)律不變),設(shè)某天開(kāi)始營(yíng)業(yè)時(shí)有該商品3件,當(dāng)天營(yíng)業(yè)結(jié)束后檢查存貨,若發(fā)現(xiàn)存貨少于2件,則當(dāng)天進(jìn)貨補(bǔ)充至3件,否則不進(jìn)貨,將頻率視為概率。()求當(dāng)天商品不進(jìn)貨的概率;()記X為第二天開(kāi)始營(yíng)業(yè)時(shí)該商品的件數(shù),求X的分布列和數(shù)學(xué)期望。8.(本小題滿(mǎn)分13分)工作人員需進(jìn)入核電站完成某項(xiàng)具有高輻射危險(xiǎn)的任務(wù),每次只派一個(gè)人進(jìn)去,且每個(gè)人只派一次,工作時(shí)間不超過(guò)10分鐘,如果有一個(gè)人10分鐘內(nèi)不能完成任務(wù)則撤出,再派下一個(gè)人?,F(xiàn)在一共只有甲、乙、丙三個(gè)人可派,他們各自能完成任務(wù)的概率分別,假設(shè)互不相等,且假定各人能否完成任務(wù)的事件相互獨(dú)立.()如果按甲在先,乙次之,丙最后的順序派人,求任務(wù)能被完成的概率。若改變?nèi)齻€(gè)人被派出的先后順序,任務(wù)能被完成的概率是否發(fā)生變化?()若按某指定順序派人,這三個(gè)人各自能完成任務(wù)的概率依次為,其中是的一個(gè)排列,求所需派出人員數(shù)目的分布列和均值(數(shù)字期望);()假定,試分析以怎樣的先后順序派出人員,可使所需派出的人員數(shù)目的均值(數(shù)字期望)達(dá)到最小。一.選擇填空1.D【命題意圖】本題考查古典概型的概率問(wèn)題.屬中等偏難題.【解析】通過(guò)畫(huà)樹(shù)狀圖可知從正六邊形的6個(gè)頂點(diǎn)中隨機(jī)選擇4個(gè)頂點(diǎn),以它們作為頂點(diǎn)的四邊形共有15個(gè),其中能構(gòu)成矩形3個(gè),所以是矩形的概率為.故選D.4.解析:至少有一個(gè)正常工作的概率為,系統(tǒng)正常工作概率為,所以選B.7. 父親的身高(x)173170176兒子的身高(y)170176182 1.(本小題滿(mǎn)分10分)本題考查回歸分析的基本思想及其初步應(yīng)用,回歸直線(xiàn)的意義和求法,數(shù)據(jù)處理的基本方法和能力,考查運(yùn)用統(tǒng)計(jì)知識(shí)解決簡(jiǎn)單實(shí)際應(yīng)用問(wèn)題的能力.解:(I)由所給數(shù)據(jù)看出,年需求量與年份之間是近似直線(xiàn)上升,下面來(lái)配回歸直線(xiàn)方程,為此對(duì)數(shù)據(jù)預(yù)處理如下:年份200642024需求量257211101929對(duì)預(yù)處理后的數(shù)據(jù),容易算得由上述計(jì)算結(jié)果,知所求回歸直線(xiàn)方程為即 (II)利用直線(xiàn)方程,可預(yù)測(cè)2012年的糧食需求量為(萬(wàn)噸)300(萬(wàn)噸).2.(共13分)解(1)當(dāng)X=8時(shí),由莖葉圖可知,乙組同學(xué)的植樹(shù)棵數(shù)是:8,8,9,10,所以平均數(shù)為方差為()當(dāng)X=9時(shí),由莖葉圖可知,甲組同學(xué)的植樹(shù)棵樹(shù)是:9,9,11,11;乙組同學(xué)的植樹(shù)棵數(shù)是:9,8,9,10。分別從甲、乙兩組中隨機(jī)選取一名同學(xué),共有44=16種可能的結(jié)果,這兩名同學(xué)植樹(shù)總棵數(shù)Y的可能取值為17,18,19,20,21事件“Y=17”等價(jià)于“甲組選出的同學(xué)植樹(shù)9棵,乙組選出的同學(xué)植樹(shù)8棵”所以該事件有2種可能的結(jié)果,因此P(Y=17)=同理可得所以隨機(jī)變量Y的分布列為:Y1718192021PEY=17P(Y=17)+18P(Y=18)+19P(Y=19)+20P(Y=20)+21P(Y=21)=17+18+19+20+21=193本小題主要考查概率、統(tǒng)計(jì)等基礎(chǔ)知識(shí),考查數(shù)據(jù)處理能力、運(yùn)算求解能力、應(yīng)用意識(shí),考查函數(shù)與方程思想、必然與或然思想、分類(lèi)與整合思想,滿(mǎn)分13分。解:(I)因?yàn)橛钟蒟1的概率分布列得由(II)由已知得,樣本的頻率分布表如下:345678030202010101用這個(gè)樣本的頻率分布估計(jì)總體分布,將頻率視為概率,可得等級(jí)系數(shù)X2的概率分布列如下:345678P030202010101所以即乙廠(chǎng)產(chǎn)品的等級(jí)系數(shù)的數(shù)學(xué)期望等于4.8.(III)乙廠(chǎng)的產(chǎn)品更具可購(gòu)買(mǎi)性,理由如下:因?yàn)榧讖S(chǎng)產(chǎn)品的等級(jí)系數(shù)的期望數(shù)學(xué)等于6,價(jià)格為6元/件,所以其性?xún)r(jià)比為因?yàn)橐覐S(chǎng)產(chǎn)呂的等級(jí)系數(shù)的期望等于4.8,價(jià)格為4元/件,所以其性?xún)r(jià)比為據(jù)此,乙廠(chǎng)的產(chǎn)品更具可購(gòu)買(mǎi)性。4本小題主要考查概率、統(tǒng)計(jì)等基礎(chǔ)知識(shí),考查數(shù)據(jù)處理能力、運(yùn)算求解能力、應(yīng)用意識(shí),考查函數(shù)與方程思想、分類(lèi)與整合思想、必然與或然思想,滿(mǎn)分12分。 解:(I)由頻率分布表得,因?yàn)槌槿〉?0件日用品中,等級(jí)系數(shù)為4的恰有3件,所以等級(jí)系數(shù)為5的恰有2件,所以,從而所以(II)從日用品中任取兩件,所有可能的結(jié)果為:,設(shè)事件A表示“從日用品中任取兩件,其等級(jí)系數(shù)相等”,則A包含的基本事件為:共4個(gè),又基本事件的總數(shù)為10,故所求的概率6(本小題滿(mǎn)分13分)解:(1),, (2)從5位同學(xué)中隨機(jī)選取2位同學(xué),共有如下10種不同的取法:1,2,1,3,1,4,1,5,2,3,2,4,2,5,3,4,3,5,4,5,選出的2位同學(xué)中,恰有1位同學(xué)的成績(jī)位于(68,75)的取法共有如下4種取法:1,2,2,3,2,4,2,5,故所求概率為7.解析:(I)P(“當(dāng)天商店不進(jìn)貨”)=P(“當(dāng)天商品銷(xiāo)售量為0件”)+P(“當(dāng)天商品銷(xiāo)售量1件”)=。(II)由題意知,的可能取值為2,3.;故的分布列為23的數(shù)學(xué)期望為。8.解:(I)無(wú)論以怎樣的順序派出人員,任務(wù)不能被完成的概率都是,所以任務(wù)能被完成的概率與三個(gè)被派出的先后順序無(wú)關(guān),并等于 (II)當(dāng)依次派出的三個(gè)人各自完成任務(wù)的概率分別為時(shí),隨機(jī)變量X的分布列為X123P所需派出的人員數(shù)目的均值(數(shù)學(xué)期望)EX是 (III)(方法一)由(II)的結(jié)論知,當(dāng)以甲最先、乙次之、丙最后的順序派人時(shí),根據(jù)常理,優(yōu)先派出完成任務(wù)概率大的人,可減少所需派出的人員數(shù)目的均值.下面證明:對(duì)于的任意排列

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論