![北師大版必修四 3.3二倍角的三角函數(shù)1 教案.doc_第1頁](http://file1.renrendoc.com/fileroot_temp2/2020-3/8/99c70442-6884-47db-8478-dcf811e6d11f/99c70442-6884-47db-8478-dcf811e6d11f1.gif)
![北師大版必修四 3.3二倍角的三角函數(shù)1 教案.doc_第2頁](http://file1.renrendoc.com/fileroot_temp2/2020-3/8/99c70442-6884-47db-8478-dcf811e6d11f/99c70442-6884-47db-8478-dcf811e6d11f2.gif)
![北師大版必修四 3.3二倍角的三角函數(shù)1 教案.doc_第3頁](http://file1.renrendoc.com/fileroot_temp2/2020-3/8/99c70442-6884-47db-8478-dcf811e6d11f/99c70442-6884-47db-8478-dcf811e6d11f3.gif)
![北師大版必修四 3.3二倍角的三角函數(shù)1 教案.doc_第4頁](http://file1.renrendoc.com/fileroot_temp2/2020-3/8/99c70442-6884-47db-8478-dcf811e6d11f/99c70442-6884-47db-8478-dcf811e6d11f4.gif)
![北師大版必修四 3.3二倍角的三角函數(shù)1 教案.doc_第5頁](http://file1.renrendoc.com/fileroot_temp2/2020-3/8/99c70442-6884-47db-8478-dcf811e6d11f/99c70442-6884-47db-8478-dcf811e6d11f5.gif)
已閱讀5頁,還剩2頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
3.3二倍角的三角函數(shù)1一、教學(xué)目標(biāo):知識與技能:通過讓學(xué)生探索、發(fā)現(xiàn)并推導(dǎo)二倍角公式,了解它們之間、以及它們與和角公式之間的內(nèi)在聯(lián)系,并通過強(qiáng)化題目的訓(xùn)練,加深對二倍角公式的理解,培養(yǎng)運(yùn)算能力及邏輯推理能力,從而提高解決問題的能力.過程與方法:通過二倍角的正弦、余弦、正切公式的運(yùn)用,會進(jìn)行簡單的求值、化簡、恒等證明.體會化歸這一基本數(shù)學(xué)思想在發(fā)現(xiàn)中和求值、化簡、恒等證明中所起的作用.使學(xué)生進(jìn)一步掌握聯(lián)系變化的觀點(diǎn),自覺地利用聯(lián)系變化的觀點(diǎn)來分析問題,提高學(xué)生分析問題、解決問題的能力.情感、態(tài)度與價(jià)值觀通過本節(jié)學(xué)習(xí),引導(dǎo)學(xué)生領(lǐng)悟?qū)ふ覕?shù)學(xué)規(guī)律的方法,培養(yǎng)學(xué)生的創(chuàng)新意識,以及善于發(fā)現(xiàn)和勇于探索的 學(xué)精神.二重點(diǎn)難點(diǎn)重點(diǎn):二倍角公式推導(dǎo)及其應(yīng)用.難點(diǎn):如何靈活應(yīng)用和、差、倍角公式進(jìn)行三角式化簡、求值、證明恒等式.三、教材與學(xué)情分析“二倍角的正弦、余弦、正切公式”是在研究了兩角和與差的三角函數(shù)的基礎(chǔ)上,進(jìn)一步研究具有“二倍角”關(guān)系的正弦、余弦、正切公式的,它既是兩角和與差的正弦、余弦、正切公式的特殊化,又為以后求三角函數(shù)值、化簡、證明提供了非常有用的理論工具、通過對二倍角的推導(dǎo)知道,二倍角的內(nèi)涵是:揭示具有倍數(shù)關(guān)系的兩個(gè)三角函數(shù)的運(yùn)算規(guī)律、通過推導(dǎo)還讓學(xué)生加深理解了高中數(shù)學(xué)由一般到特殊的化歸思想、因此本節(jié)內(nèi)容也是培養(yǎng)學(xué)生運(yùn)算和邏輯推理能力的重要內(nèi)容,對培養(yǎng)學(xué)生的探索精神和創(chuàng)新能力、發(fā)現(xiàn)問題和解決問題的能力都有著十分重要的意義. 本節(jié)課通過教師提出問題、設(shè)置情境及對和角公式中、關(guān)系的特殊情形=時(shí)的簡化,讓學(xué)生在探究中既感到自然、易于接受,還可清晰知道和角的三角函數(shù)與倍角公式的聯(lián)系,同時(shí)也讓學(xué)生學(xué)會怎樣發(fā)現(xiàn)規(guī)律及體會由一般到特殊的化歸思想.這一切教師要引導(dǎo)學(xué)生自己去做,因?yàn)?,?shù)學(xué)課程標(biāo)準(zhǔn)提出:“要讓學(xué)生在參與特定的數(shù)學(xué)活動,在具體情境中初步認(rèn)識對象的特征,獲得一些體驗(yàn)”.四、教學(xué)方法 問題引導(dǎo),主動探究,啟發(fā)式教 五、教學(xué)過程(一)導(dǎo)入新課 思路1.(復(fù)習(xí)導(dǎo)入)請學(xué)生回憶上兩節(jié)共同探討的和角公式、差角公式,并回憶這組公式的來龍去脈,然后讓學(xué)生默寫這六個(gè)公式.教師引導(dǎo)學(xué)生:和角公式與差角公式是可以互相化歸的.當(dāng)兩角相等時(shí),兩角之和便為此角的二倍,那么是否可把和角公式化歸為二倍角公式呢?今天,我們進(jìn)一步探討一下二倍角的問題,請同學(xué)們思考一下,應(yīng)解決哪些問題呢?由此展開新課. 思路2.(問題導(dǎo)入)出示問題,讓學(xué)生計(jì)算,若sin=,(,),求sin2,cos2的值.學(xué)生會很容易看出:sin2=sin(+)=sincos+cossin=2sincos的,以此展開新課,并由此展開聯(lián)想推出其他公式.(二)新知探究、提出問題還記得和角的正弦、余弦、正切公式嗎?(請學(xué)生默寫出來,并由一名學(xué)生到黑板默寫)你寫的這三個(gè)公式中角、會有特殊關(guān)系=嗎?此時(shí)公式變成什么形式?在得到的c2公式中,還有其他表示形式嗎?細(xì)心觀察二倍角公式結(jié)構(gòu),有什么特征呢?能看出公式中角的含義嗎?思考過公式成立的條件嗎?讓學(xué)生填空:老師隨機(jī)給出等號一邊括號內(nèi)的角,學(xué)生回答等號另一邊括號內(nèi)的角,稍后兩人為一組,做填數(shù)游戲:sin( )=2sin( )cos( ),cos( )=cos2( )-sin2( ).思考過公式的逆用嗎?想一想c2還有哪些變形?請思考以下問題:sin2=2sin嗎?cos2=2cos嗎?tan2=2tan? 活動:問題,學(xué)生默寫完后,教師打出課件,然后引導(dǎo)學(xué)生觀察正弦、余弦的和角公式,提醒學(xué)生注意公式中的,,既然可以是任意角,怎么任意的?你會有些什么樣的奇妙想法呢?并鼓勵學(xué)生大膽試一試.如果學(xué)生想到,會有相等這個(gè)特殊情況,教師就此進(jìn)入下一個(gè)問題,如果學(xué)生沒想到這種特殊情況,教師適當(dāng)點(diǎn)撥進(jìn)入問題,然后找一名學(xué)生到黑板進(jìn)行簡化,其他學(xué)生在自己的座位上簡化、教師再與學(xué)生一起集體訂正黑板的書寫,最后學(xué)生都不難得出以下式子,鼓勵學(xué)生嘗試一下,對得出的結(jié)論給出解釋.這個(gè)過程教師要舍得花時(shí)間,充分地讓學(xué)生去思考、去探究,并初步地感受二倍角的意義.同時(shí)開拓學(xué)生的思維空間,為學(xué)生將來遇到的3或3等角的探究附設(shè)類比聯(lián)想的源泉.sin(+)=sincos+cossinsin2=2sincos(s2);cos(+)=coscos-sinsincos2=cos2-sin2(c2);tan(+)= 這時(shí)教師適時(shí)地向?qū)W生指出,我們把這三個(gè)公式分別叫做二倍角的正弦,余弦,正切公式,并指導(dǎo)學(xué)生閱讀教 書,確切明了二倍角的含義,以后的“倍角”專指“二倍角”、教師適時(shí)提出問題,點(diǎn)撥學(xué)生結(jié)合sin2+cos2=1思考,因此二倍角的余弦公式又可表示為以下右表中的公式. 這時(shí)教師點(diǎn)出,這些公式都叫做倍角公式(用多媒體演示).倍角公式給出了的三角函數(shù)與2的三角函數(shù)之間的關(guān)系. 問題,教師指導(dǎo)學(xué)生,這組公式用途很廣,并與學(xué)生一起觀察公式的特征與記憶,首先公式左邊角是右邊角的2倍;左邊是2的三角函數(shù)的一次式,右邊是的三角函數(shù)的二次式,即左到右升冪縮角,右到左降冪擴(kuò)角、二倍角的正弦是單項(xiàng)式,余弦是多項(xiàng)式,正切是分式. 問題,因?yàn)檫€沒有應(yīng)用,對公式中的含義學(xué)生可能還理解不到位,教師要引導(dǎo)學(xué)生觀察思考并初步感性認(rèn)識到:()這里的“倍角”專指“二倍角”,遇到“三倍角”等名詞時(shí),“三”字等不可省去;()通過二倍角公式,可以用單角的三角函數(shù)表示二倍角的三角函數(shù);()二倍角公式是兩角和的三角函數(shù)公式的特殊情況;()公式(s2),(c2)中的角沒有限制,都是r.但公式(t2)需在 +和 +( )時(shí)才成立,這一條件限制要引起學(xué)生的注意.但是當(dāng)= +, 時(shí),雖然tan不存在,此時(shí)不能用此公式,但tan2是存在的,故可改用誘導(dǎo)公式.問題,填空是為了讓學(xué)生明了二倍角的相對性,即二倍角公式不僅限于2是的二倍的形式,其他如4是2的二倍,是的二倍,3是的二倍,是的二倍,-是-的二倍等,所有這些都可以應(yīng)用二倍角公式.例如:sin=2sincos,cos=cos2-sin2等等. 問題,本組公式的靈活運(yùn)用還在于它的逆用以及它的變形用,這點(diǎn)教師更要提醒學(xué)生引起足夠的注意.如:sin3cos3=sin6,4sincos=2(2sincos)=2sin,=tan80,cos22-sin22=cos4,tan2=2tan(1-tan2)等等. 問題,一般情況下:sin22sin,cos22cos,tan22tan.若sin2=2sin,則2sincos=2sin,即sin=0或cos=1,此時(shí)= ( ).若cos2=2cos,則2cos2-2cos-1=0,即cos=(cos=舍去).若tan2=2tan,則=2tan,tan=0,即= ( ).解答:(略)(三)應(yīng)用示例例1 已知sin2=,求sin4,cos4,tan4的值. 活動:教師引導(dǎo)學(xué)生分析題目中角的關(guān)系,觀察所給條件與結(jié)論的結(jié)構(gòu),注意二倍角公式的選用,領(lǐng)悟“倍角”是相對的這一換元思想.讓學(xué)生體會“倍”的深刻含義,它是描述兩個(gè)數(shù)量之間關(guān)系的.本題中的已知條件給出了2的正弦值.由于4是2的二倍角,因此可以考慮用倍角公式.本例是直接應(yīng)用二倍角公式解題,目的是為了讓學(xué)生初步熟悉二倍角的應(yīng)用,理解二倍角的相對性,教師大膽放手,可讓學(xué)生自己獨(dú)立探究完成.解:由,得2.又sin2=,cos2=.于是sin4=sin2(2)=2sin2cos2=2()=;cos4=cos2(2)=1-2sin22=1-2()2=;tan4=(-)=. 點(diǎn)評:學(xué)生由問題中條件與結(jié)論的結(jié)構(gòu)不難想象出解法,但要提醒學(xué)生注意,在解題時(shí)注意優(yōu)化問題的解答過程,使問題的解答簡捷、巧妙、規(guī)范,并達(dá)到熟練掌握的程度.本節(jié)公式的基本應(yīng)用是高考的熱點(diǎn).變式訓(xùn)練1.不查表,求值:sin15+cos15.解:原式= 點(diǎn)評:本題在兩角和與差的學(xué)習(xí)中已經(jīng)解決過,現(xiàn)用二倍角公式給出另外的解法,讓學(xué)生體會它們之間的聯(lián)系,體會數(shù)學(xué)變化的魅力.2. 若,則cos+sin的值為( )a. b. c. d.答案:c例2 證明=tan. 活動:先讓學(xué)生思考一會,鼓勵學(xué)生充分發(fā)揮聰明才智,戰(zhàn)勝它,并力爭一題多解.教師可點(diǎn)撥學(xué)生想一想,到現(xiàn)在為止,所學(xué)的證明三角恒等式的方法大致有幾種:從復(fù)雜一端化向簡單一端;兩邊化簡,中間碰頭;化切為弦;還可以利用分析綜合法解決,有時(shí)幾種方法會同時(shí)使用等.對找不到思考方向的學(xué)生,教師點(diǎn)出:可否再添加一種,化倍角為單角?這可否成為證明三角恒等式的一種方法?再適時(shí)引導(dǎo),前面學(xué)習(xí)同角三角函數(shù)的基本關(guān)系時(shí)曾用到“1”的代換,對“1”的妙用大家深有體會,這里可否在“1”上做做文章? 待學(xué)生探究解決方法后,可找?guī)讉€(gè)學(xué)生到黑板書寫解答過程,以便對照點(diǎn)評及給學(xué)生以啟發(fā).點(diǎn)評時(shí)對能夠善于運(yùn)用所學(xué)的新知識解決問題的學(xué)生給予贊揚(yáng);對暫時(shí)找不到思路的學(xué)生給予點(diǎn)撥、鼓勵.強(qiáng)調(diào)“1”的妙用很妙,妙在它在三角恒等式中一旦出現(xiàn),在證明過程中就會起到至關(guān)重要的作用,在今后的證題中,萬萬不要忽視它.證明:方法一:左=tan=右.所以,原式成立.方法二:左=tan=右.方法三:左=tan=右. 點(diǎn)評:以上幾種方法大致遵循以下規(guī)律:首先從復(fù)雜端化向簡單端;第二,化倍角為單角,這是我們今天剛剛學(xué)習(xí)的;第三,證題中注意對數(shù)字的處理,尤其“1”的代換的妙用,請同學(xué)們在探究中仔細(xì)體會這點(diǎn).在這道題中通常用的幾種方法都用到了,不論用哪一種方法,都要思路清晰,書寫規(guī)范才是.例3 在abc中,cosa=,tanb=2,求tan(2a+2b)的值. 活動:這是本節(jié)課本上最后一個(gè)例題,結(jié)合三角形,具有一定的綜合性,同時(shí)也是和與差公式的應(yīng)用問題.教師可引導(dǎo)學(xué)生注意在三角形的背景下研究問題,會帶來一些隱含的條件,如a+b+c=,0a,0b,0c,就是其中的一個(gè)隱含條件.可先讓學(xué)生討論探究,教師適時(shí)點(diǎn)撥.學(xué)生探究解法時(shí)教師進(jìn)一步啟發(fā)學(xué)生思考由條件到結(jié)果的函數(shù)及角的聯(lián)系.由于對2a+2b與a,b之間關(guān)系的看法不同會產(chǎn)生不同的解題思路,所以學(xué)生會產(chǎn)生不同的解法,不過它們都是對倍角公式、和角公式的聯(lián)合運(yùn)用,本質(zhì)上沒有區(qū)別.不論學(xué)生的解答正確與否,教師都不要直接干預(yù).在學(xué)生自己嘗試解決問題后,教師可與學(xué)生一起比較各種不同的解法,并引導(dǎo)學(xué)生進(jìn)行解題方法的歸納總結(jié).基礎(chǔ)較好的班級還可以把求tan(2a+2b)的值改為求tan2c的值.解:方法一:在abc中,由cosa=,0a,得sina=所以tana=,tan2a=又tanb=2,所以tan2b=于是tan(2a+2b)=方法二:在abc中,由cosa=,0a,得sina=所以tana=.又tanb=2,所以tan(a+b)=于是tan(2a+2b)=tan2(a+b)= 點(diǎn)評:以上兩種方法都是對倍角公式、和角公式的聯(lián)合運(yùn)用,本質(zhì)上沒有區(qū)別,其目的是為了鼓勵學(xué)生用不同的思路去思考,以拓展學(xué)生的視野.六、課堂小結(jié)1.先由學(xué)生回顧本節(jié)課都學(xué)到了什么?有哪些收獲?對前面學(xué)過的兩角和公
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年股權(quán)轉(zhuǎn)讓擔(dān)保合同范本
- 2025年人力資源專員聘請合同范本
- 2025年雙向商務(wù)合同協(xié)議書樣本
- 項(xiàng)目營銷策劃合同樣本2025年
- 2025年個(gè)人消費(fèi)借款合同書樣本
- 2025年信貸資產(chǎn)重組策劃權(quán)轉(zhuǎn)讓合同書
- 教育助學(xué)基金捐贈協(xié)議合同范本
- 2025銷售目標(biāo)責(zé)任書合同
- 商業(yè)車位租賃合同實(shí)施細(xì)則
- 工程施工合同終止協(xié)議
- 圖書外借服務(wù)計(jì)劃
- 軟考系統(tǒng)集成項(xiàng)目管理工程師教程完整版
- GB/T 45091-2024塑料再生塑料限用物質(zhì)限量要求
- 人教版八年級上冊地理 2024-2025學(xué)年八年級上冊地理期中測試卷(二)(含答案)
- 危險(xiǎn)性較大的分部分項(xiàng)工程清單和安全管理措施范文
- 2024-2025年江蘇專轉(zhuǎn)本英語歷年真題(含答案)
- 投標(biāo)廢標(biāo)培訓(xùn)
- 腦卒中課件完整版本
- 藥房保潔流程規(guī)范
- 裝修合同違約解除通知書
- (新版)六西格瑪綠帶認(rèn)證考試復(fù)習(xí)題庫(含答案)
評論
0/150
提交評論