§1.3.2函數(shù)的極值與導數(shù)_第1頁
§1.3.2函數(shù)的極值與導數(shù)_第2頁
§1.3.2函數(shù)的極值與導數(shù)_第3頁
§1.3.2函數(shù)的極值與導數(shù)_第4頁
全文預覽已結(jié)束

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領

文檔簡介

3.3.2函數(shù)的極值與導數(shù)(2課時)教學目標:1.理解極大值、極小值的概念;2.能夠運用判別極大值、極小值的方法來求函數(shù)的極值;3.掌握求可導函數(shù)的極值的步驟;教學重點:極大、極小值的概念和判別方法,以及求可導函數(shù)的極值的步驟.教學難點:對極大、極小值概念的理解及求可導函數(shù)的極值的步驟.教學過程:一創(chuàng)設情景觀察圖3.3-8,我們發(fā)現(xiàn),時,高臺跳水運動員距水面高度最大那么,函數(shù)在此點的導數(shù)是多少呢?此點附近的圖像有什么特點?相應地,導數(shù)的符號有什么變化規(guī)律?放大附近函數(shù)的圖像,如圖3.3-9可以看出;在,當時,函數(shù)單調(diào)遞增,;當時,函數(shù)單調(diào)遞減,;這就說明,在附近,函數(shù)值先增(,)后減(,)這樣,當在的附近從小到大經(jīng)過時,先正后負,且連續(xù)變化,于是有對于一般的函數(shù),是否也有這樣的性質(zhì)呢?附:對極大、極小值概念的理解,可以結(jié)合圖象進行說明.并且要說明函數(shù)的極值是就函數(shù)在某一點附近的小區(qū)間而言的. 從圖象觀察得出,判別極大、極小值的方法.判斷極值點的關鍵是這點兩側(cè)的導數(shù)異號二新課講授 1問題:圖3.3-1(1),它表示跳水運動中高度隨時間變化的函數(shù)的圖像,圖3.3-1(2)表示高臺跳水運動員的速度隨時間變化的函數(shù)的圖像運動員從起跳到最高點,以及從最高點到入水這兩段時間的運動狀態(tài)有什么區(qū)別?通過觀察圖像,我們可以發(fā)現(xiàn):(1) 運動員從起點到最高點,離水面的高度隨時間的增加而增加,即是增函數(shù)相應地,(2) 從最高點到入水,運動員離水面的高度隨時間的增加而減少,即是減函數(shù)相應地,2函數(shù)的單調(diào)性與導數(shù)的關系觀察下面函數(shù)的圖像,探討函數(shù)的單調(diào)性與其導數(shù)正負的關系如圖3.3-3,導數(shù)表示函數(shù)在點處的切線的斜率在處,切線是“左下右上”式的,這時,函數(shù)在附近單調(diào)遞增;在處,切線是“左上右下”式的,這時,函數(shù)在附近單調(diào)遞減結(jié)論:函數(shù)的單調(diào)性與導數(shù)的關系在某個區(qū)間內(nèi),如果,那么函數(shù)在這個區(qū)間內(nèi)單調(diào)遞增;如果,那么函數(shù)在這個區(qū)間內(nèi)單調(diào)遞減說明:(1)特別的,如果,那么函數(shù)在這個區(qū)間內(nèi)是常函數(shù)3求解函數(shù)單調(diào)區(qū)間的步驟:(1)確定函數(shù)的定義域;(2)求導數(shù);(3)解不等式,解集在定義域內(nèi)的部分為增區(qū)間;(4)解不等式,解集在定義域內(nèi)的部分為減區(qū)間三典例分析例1已知導函數(shù)的下列信息:當時,;當,或時,;當,或時,試畫出函數(shù)圖像的大致形狀解:當時,可知在此區(qū)間內(nèi)單調(diào)遞增;當,或時,;可知在此區(qū)間內(nèi)單調(diào)遞減;當,或時,這兩點比較特殊,我們把它稱為“臨界點”綜上,函數(shù)圖像的大致形狀如圖3.3-4所示例2判斷下列函數(shù)的單調(diào)性,并求出單調(diào)區(qū)間(1); (2)(3); (4)解:(1)因為,所以, 因此,在R上單調(diào)遞增,如圖3.3-5(1)所示(2)因為,所以, 當,即時,函數(shù)單調(diào)遞增;當,即時,函數(shù)單調(diào)遞減;函數(shù)的圖像如圖3.3-5(2)所示(3) 因為,所以, 因此,函數(shù)在單調(diào)遞減,如圖3.3-5(3)所示(4) 因為,所以 當,即 時,函數(shù) ;當,即 時,函數(shù) ;函數(shù)的圖像如圖3.3-5(4)所示注:(3)、(4)生練例3 如圖3.3-6,水以常速(即單位時間內(nèi)注入水的體積相同)注入下面四種底面積相同的容器中,請分別找出與各容器對應的水的高度與時間的函數(shù)關系圖像分析:以容器(2)為例,由于容器上細下粗,所以水以常速注入時,開始階段高度增加得慢,以后高度增加得越來越快反映在圖像上,(A)符合上述變化情況同理可知其它三種容器的情況解:思考:例3表明,通過函數(shù)圖像,不僅可以看出函數(shù)的增減,還可以看出其變化的快慢結(jié)合圖像,你能從導數(shù)的角度解釋變化快慢的情況嗎? 一般的,如果一個函數(shù)在某一范圍內(nèi)導數(shù)的絕對值較大,那么函數(shù)在這個范圍內(nèi)變化的快,這時,函數(shù)的圖像就比較“陡峭”;反之,函數(shù)的圖像就“平緩”一些如圖3.3-7所示,函數(shù)在或內(nèi)的圖像“陡峭”,在或內(nèi)的圖像“平緩”例4 求證:函數(shù)在區(qū)間內(nèi)是減函數(shù)證明:因為當即時,所以函數(shù)在區(qū)間內(nèi)是減函數(shù)說明:證明可導函數(shù)在內(nèi)的單調(diào)性步驟:(1)求導函數(shù);(2)判斷在內(nèi)的符號;(3)做出結(jié)論:為增函數(shù),為減函數(shù)例5 已知函數(shù) 在區(qū)間上是增函數(shù),求實數(shù)的取值范圍解:,因為在區(qū)間上是增函數(shù),所以對恒成立,即對恒成立,解之得:所以實數(shù)的取值范圍為說明:已知函數(shù)的單調(diào)性求參數(shù)的取值范圍是一種常見的題型,常利用導數(shù)與函數(shù)單調(diào)性關系:即“若函數(shù)單調(diào)遞增,則;若函數(shù)單調(diào)遞減,則”來求解,注意此時公式中的等號不能省略,否則漏解四課堂練習1求下列函數(shù)的單調(diào)區(qū)間1.f(x)=2x36x2+7

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論