


免費(fèi)預(yù)覽已結(jié)束,剩余5頁可下載查看
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
2006年黑龍江省哈爾濱市第五中學(xué)高二數(shù)學(xué)基本不等式http:/www.DearEDU.com課題: 6.2基本不等式第1課時(shí)授課類型:新授課【教學(xué)目標(biāo)】1知識(shí)與技能:學(xué)會(huì)推導(dǎo)并掌握基本不等式,理解這個(gè)基本不等式的幾何意義,并掌握定理中的不等號(hào)“”取等號(hào)的條件是:當(dāng)且僅當(dāng)這兩個(gè)數(shù)相等;2過程與方法:通過實(shí)例探究抽象基本不等式;3情態(tài)與價(jià)值:通過本節(jié)的學(xué)習(xí),體會(huì)數(shù)學(xué)來源于生活,提高學(xué)習(xí)數(shù)學(xué)的興趣【教學(xué)重點(diǎn)】應(yīng)用數(shù)形結(jié)合的思想理解不等式,并從不同角度探索不等式的證明過程;【教學(xué)難點(diǎn)】基本不等式等號(hào)成立條件【教學(xué)過程】1.課題導(dǎo)入基本不等式的幾何背景:如圖是在北京召開的第24界國際數(shù)學(xué)家大會(huì)的會(huì)標(biāo),會(huì)標(biāo)是根據(jù)中國古代數(shù)學(xué)家趙爽的弦圖設(shè)計(jì)的,顏色的明暗使它看上去象一個(gè)風(fēng)車,代表中國人民熱情好客。你能在這個(gè)圖案中找出一些相等關(guān)系或不等關(guān)系嗎?教師引導(dǎo)學(xué)生從面積的關(guān)系去找相等關(guān)系或不等關(guān)系。2.講授新課1探究圖形中的不等關(guān)系將圖中的“風(fēng)車”抽象成如圖,在正方形ABCD中右個(gè)全等的直角三角形。設(shè)直角三角形的兩條直角邊長為a,b那么正方形的邊長為。這樣,4個(gè)直角三角形的面積的和是2ab,正方形的面積為。由于4個(gè)直角三角形的面積小于正方形的面積,我們就得到了一個(gè)不等式:。當(dāng)直角三角形變?yōu)榈妊苯侨切危碼=b時(shí),正方形EFGH縮為一個(gè)點(diǎn),這時(shí)有。2得到結(jié)論:一般的,如果3思考證明:你能給出它的證明嗎?證明:因?yàn)?當(dāng)所以,即41)從幾何圖形的面積關(guān)系認(rèn)識(shí)基本不等式特別的,如果a0,b0,我們用分別代替a、b ,可得,通常我們把上式寫作: 2)從不等式的性質(zhì)推導(dǎo)基本不等式用分析法證明:要證 (1)只要證 a+b (2)要證(2),只要證 a+b- 0 (3)要證(3),只要證 ( - ) (4)顯然,(4)是成立的。當(dāng)且僅當(dāng)a=b時(shí),(4)中的等號(hào)成立。 3)理解基本不等式的幾何意義探究:課本第110頁的“探究”在右圖中,AB是圓的直徑,點(diǎn)C是AB上的一點(diǎn),AC=a,BC=b。過點(diǎn)C作垂直于AB的弦DE,連接AD、BD。你能利用這個(gè)圖形得出基本不等式的幾何解釋嗎?易證tADtDB,那么D2AB即D.這個(gè)圓的半徑為,顯然,它大于或等于CD,即,其中當(dāng)且僅當(dāng)點(diǎn)C與圓心重合,即ab時(shí),等號(hào)成立.因此:基本不等式幾何意義是“半徑不小于半弦”評述:1.如果把看作是正數(shù)a、b的等差中項(xiàng),看作是正數(shù)a、b的等比中項(xiàng),那么該定理可以敘述為:兩個(gè)正數(shù)的等差中項(xiàng)不小于它們的等比中項(xiàng).2.在數(shù)學(xué)中,我們稱為a、b的算術(shù)平均數(shù),稱為a、b的幾何平均數(shù).本節(jié)定理還可敘述為:兩個(gè)正數(shù)的算術(shù)平均數(shù)不小于它們的幾何平均數(shù).補(bǔ)充例題例1 已知x、y都是正數(shù),求證:(1)2;(2)(xy)(x2y2)(x3y3)x3y3.分析:在運(yùn)用定理:時(shí),注意條件a、b均為正數(shù),結(jié)合不等式的性質(zhì)(把握好每條性質(zhì)成立的條件),進(jìn)行變形.解:x,y都是正數(shù) 0,0,x20,y20,x30,y30(1)2即2.(2)xy20 x2y220 x3y320(xy)(x2y2)(x3y3)222x3y3即(xy)(x2y2)(x3y3)x3y3.3.隨堂練習(xí)1.已知a、b、c都是正數(shù),求證(ab)(bc)(ca)abc分析:對于此類題目,選擇定理:(a0,b0)靈活變形,可求得結(jié)果.解:a,b,c都是正數(shù)ab20bc20ca20(ab)(bc)(ca)222abc即(ab)(bc)(ca)abc.4.課時(shí)小結(jié)本節(jié)課,我們學(xué)習(xí)了重要不等式a2b22ab;兩正數(shù)a、b的算術(shù)平均數(shù)(),幾何平均數(shù)()及它們的關(guān)系().它們成立的條件不同,前者只要求a、b都是實(shí)數(shù),而后者要求a、b都是正數(shù).它們既是不等式變形的基本工具,又是求函數(shù)最值的重要工具(下一節(jié)我們將學(xué)習(xí)它們的應(yīng)用).我們還可以用它們下面的等價(jià)變形來解決問題:ab,ab()2.5.評價(jià)設(shè)計(jì)課本第113頁習(xí)題A組的第1題【板書設(shè)計(jì)】第2課時(shí)授課類型:新授課【教學(xué)目標(biāo)】1知識(shí)與技能:進(jìn)一步掌握基本不等式;會(huì)應(yīng)用此不等式求某些函數(shù)的最值;能夠解決一些簡單的實(shí)際問題2過程與方法:通過兩個(gè)例題的研究,進(jìn)一步掌握基本不等式,并會(huì)用此定理求某些函數(shù)的最大、最小值。3情態(tài)與價(jià)值:引發(fā)學(xué)生學(xué)習(xí)和使用數(shù)學(xué)知識(shí)的興趣,發(fā)展創(chuàng)新精神,培養(yǎng)實(shí)事求是、理論與實(shí)際相結(jié)合的科學(xué)態(tài)度和科學(xué)道德。【教學(xué)重點(diǎn)】基本不等式的應(yīng)用【教學(xué)難點(diǎn)】利用基本不等式求最大值、最小值?!窘虒W(xué)過程】1.課題導(dǎo)入1重要不等式:如果2基本不等式:如果a,b是正數(shù),那么3.我們稱的算術(shù)平均數(shù),稱的幾何平均數(shù).成立的條件是不同的:前者只要求a,b都是實(shí)數(shù),而后者要求a,b都是正數(shù)。2.講授新課例1(1)用籬笆圍成一個(gè)面積為100m的矩形菜園,問這個(gè)矩形的長、寬各為多少時(shí),所用籬笆最短。最短的籬笆是多少?(2)段長為36 m的籬笆圍成一個(gè)一邊靠墻的矩形菜園,問這個(gè)矩形的長、寬各為多少時(shí),菜園的面積最大,最大面積是多少?解:(1)設(shè)矩形菜園的長為x m,寬為y m,則xy=100,籬笆的長為2(x+y) m。由,可得 , 。等號(hào)當(dāng)且僅當(dāng)x=y時(shí)成立,此時(shí)x=y=10.因此,這個(gè)矩形的長、寬都為10m時(shí),所用的籬笆最短,最短的籬笆是40m.(2)解法一:設(shè)矩形菜園的寬為xm,則長為(362x)m,其中0x,其面積Sx(362x)2x(362x)當(dāng)且僅當(dāng)2x362x,即x9時(shí)菜園面積最大,即菜園長9m,寬為9 m時(shí)菜園面積最大為81 m2解法二:設(shè)矩形菜園的長為x m.,寬為y m ,則2(x+y)=36, x+y=18,矩形菜園的面積為xy m。由,可得 當(dāng)且僅當(dāng)x=y,即x=y=9時(shí),等號(hào)成立。因此,這個(gè)矩形的長、寬都為9m時(shí),菜園的面積最大,最大面積是81m歸納:1.兩個(gè)正數(shù)的和為定值時(shí),它們的積有最大值,即若a,bR,且abM,M為定值,則ab,等號(hào)當(dāng)且僅當(dāng)ab時(shí)成立.2.兩個(gè)正數(shù)的積為定值時(shí),它們的和有最小值,即若a,bR,且abP,P為定值,則ab2,等號(hào)當(dāng)且僅當(dāng)ab時(shí)成立.例2 某工廠要建造一個(gè)長方體無蓋貯水池,其容積為4800m3,深為3m,如果池底每1m2的造價(jià)為150元,池壁每1m2的造價(jià)為120元,問怎樣設(shè)計(jì)水池能使總造價(jià)最低,最低總造價(jià)是多少元?分析:此題首先需要由實(shí)際問題向數(shù)學(xué)問題轉(zhuǎn)化,即建立函數(shù)關(guān)系式,然后求函數(shù)的最值,其中用到了均值不等式定理。解:設(shè)水池底面一邊的長度為xm,水池的總造價(jià)為l元,根據(jù)題意,得當(dāng)因此,當(dāng)水池的底面是邊長為40m的正方形時(shí),水池的總造價(jià)最低,最低總造價(jià)是297600元評述:此題既是不等式性質(zhì)在實(shí)際中的應(yīng)用,應(yīng)注意數(shù)學(xué)語言的應(yīng)用即函數(shù)解析式的建立,又是不等式性質(zhì)在求最值中的應(yīng)用,應(yīng)注意不等式性質(zhì)的適用條件。歸納:用均值不等式解決此類問題時(shí),應(yīng)按如下步驟進(jìn)行:(1)先理解題意,設(shè)變量,設(shè)變量時(shí)一般把要求最大值或最小值的變量定為函數(shù);(2)建立相應(yīng)的函數(shù)關(guān)系式,把實(shí)際問題抽象為函數(shù)的最大值或最小值問題;(3)在定義域內(nèi),求出函數(shù)的最大值或最小值;(4)正確寫出答案.3.隨堂練習(xí)1.已知x0,當(dāng)x取什么值時(shí),x2的值最小?最小值是多少?2課本第113頁的練習(xí)1、2、3、44.課時(shí)小結(jié)本節(jié)課我們用兩個(gè)正數(shù)的算術(shù)平均數(shù)與幾何平均數(shù)的關(guān)系順利解決了函數(shù)的一些最值問題。在用均值不等式求函數(shù)的最值,是值得重視的一種方法,但在具體求解時(shí),應(yīng)注意考查下列三個(gè)條件:(1)函數(shù)的解析式中,各項(xiàng)均為正數(shù);(2)函數(shù)的解析式中,含變數(shù)的各項(xiàng)的和或積必須有一個(gè)為定值;(3)函數(shù)的解析式中,含變數(shù)的各項(xiàng)均相等,取得最值即用均值不等式求某些函數(shù)的最值時(shí),應(yīng)具備三個(gè)條件:一正二定三取等。5.評價(jià)設(shè)計(jì)課本第113頁習(xí)題A組的第2、4題【板書設(shè)計(jì)】【授后記】第3課時(shí)授課類型:習(xí)題課【教學(xué)目標(biāo)】1知識(shí)與技能:進(jìn)一步掌握基本不等式;會(huì)用此不等式證明不等式,會(huì)應(yīng)用此不等式求某些函數(shù)的最值,能夠解決一些簡單的實(shí)際問題;2過程與方法:通過例題的研究,進(jìn)一步掌握基本不等式,并會(huì)用此定理求某些函數(shù)的最大、最小值。3情態(tài)與價(jià)值:引發(fā)學(xué)生學(xué)習(xí)和使用數(shù)學(xué)知識(shí)的興趣,發(fā)展創(chuàng)新精神,培養(yǎng)實(shí)事求是、理論與實(shí)際相結(jié)合的科學(xué)態(tài)度和科學(xué)道德?!窘虒W(xué)重點(diǎn)】掌握基本不等式,會(huì)用此不等式證明不等式,會(huì)用此不等式求某些函數(shù)的最值【教學(xué)難點(diǎn)】利用此不等式求函數(shù)的最大、最小值?!窘虒W(xué)過程】1.課題導(dǎo)入1基本不等式:如果a,b是正數(shù),那么2用基本不等式求最大(?。┲档牟襟E。2.講授新課1)利用基本不等式證明不等式例1 已知m0,求證。思維切入因?yàn)閙0,所以可把和分別看作基本不等式中的a和b, 直接利用基本不等式。證明因?yàn)?m0,,由基本不等式得當(dāng)且僅當(dāng)=,即m=2時(shí),取等號(hào)。規(guī)律技巧總結(jié) 注意:m0這一前提條件和=144為定值的前提條件。3.隨堂練習(xí)1思維拓展1 已知a,b,c,d都是正數(shù),求證.思維拓展2 求證.例2 求證:.思維切入 由于不等式左邊含有字母a,右邊無字母,直接使用基本不等式,無法約掉字母a,而左邊.這樣變形后,在用基本不等式即可得證.證明 當(dāng)且僅當(dāng)=a-3即a=5時(shí),等號(hào)成立.規(guī)律技巧總結(jié) 通過加減項(xiàng)的方法配湊成基本不等式的形式.2)利用不等式求最值例3 (1) 若x0,求的最小值; (2)若x0和=36兩個(gè)前提條件;(2)中x0來轉(zhuǎn)化.解L1) 因?yàn)?x0 由基本不等式得,當(dāng)且僅當(dāng)即x=時(shí), 取最小值12.(2)因?yàn)?
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025電梯安裝施工合同范本
- 2025股權(quán)轉(zhuǎn)讓合同轉(zhuǎn)讓合同
- 2025綜合租賃合同示范文本
- 內(nèi)蒙古自治區(qū)赤峰市紅山區(qū)赤峰第四中學(xué)2023-2024學(xué)年高二下學(xué)期5月期中生物試題 含解析
- 2025屆遼寧省遼南協(xié)作體高三下學(xué)期第三次模擬物理試卷
- 降壓藥物護(hù)理
- 普通心理學(xué)(第2版)課件 第十二章 人格
- 人教版小學(xué)一年級(jí)語文上學(xué)期期末檢測題
- 2025年醫(yī)患溝通學(xué)試題
- 初三畢業(yè)班中考前家長會(huì)班主任發(fā)言稿模版
- 2025年云南省文山州事業(yè)單位招聘歷年自考難、易點(diǎn)模擬試卷(共500題附帶答案詳解)
- 2025屆新高考物理沖刺復(fù)習(xí):用動(dòng)量定理解決帶電粒子在磁場中的運(yùn)動(dòng)問題
- 2025年春滬科版七年級(jí)數(shù)學(xué)下冊 第9章 分式 小結(jié)與復(fù)習(xí)
- 污水處理廠排水管道施工流程
- 《斷魂槍》老舍課件
- 2025至2030年中國消失模專用泡沫數(shù)據(jù)監(jiān)測研究報(bào)告
- 2024年音樂節(jié)承辦協(xié)議3篇
- 中考數(shù)學(xué)總復(fù)習(xí)第四章第20課時(shí)解直角三角形課件
- 2024年度合資成立新能源研發(fā)分公司合作協(xié)議范本3篇
- 2024-2030年中國內(nèi)河碼頭產(chǎn)業(yè)前景預(yù)測規(guī)劃研究報(bào)告
評論
0/150
提交評論