已閱讀5頁,還剩4頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
一次函數(shù)說課稿 “說課”有利于提高教師理論素養(yǎng)和駕馭教材的能力,也有利于提高教師的語言表達(dá)能力,因而受到廣大教師的重視,登上了教育研究的大雅之堂。下面是收集整理的一次函數(shù)說課稿,希望對(duì)您有所幫助! 大家好!我今天說課的內(nèi)容是*版八年級(jí)上冊(cè)第七章第三節(jié)一次函數(shù)第1課時(shí),下面我將從教材分析、教法學(xué)法分析、教學(xué)過程分析和設(shè)計(jì)說明等幾個(gè)環(huán)節(jié)對(duì)本節(jié)課進(jìn)行說明。 一、教材分析 1、教材地位和作用 本節(jié)課是在學(xué)生學(xué)習(xí)了常量和變量及函數(shù)的基本概念的基礎(chǔ)上學(xué)習(xí)的,學(xué)好一次函數(shù)的概念將為接下來學(xué)習(xí)一次函數(shù)的圖象和應(yīng)用打下堅(jiān)實(shí)的基礎(chǔ),同時(shí)也有利于以后學(xué)習(xí)反比例函數(shù)和二次函數(shù),所以學(xué)好本節(jié)內(nèi)容至關(guān)重要。 2、教學(xué)目標(biāo)分析 根據(jù)新課程標(biāo)準(zhǔn),我確定以下教學(xué)目標(biāo): 知識(shí)和技能目標(biāo):理解正比例函數(shù)和一次函數(shù)的概念,會(huì)根據(jù)數(shù)量關(guān)系求正比例函數(shù)和一次函數(shù)的解析式。 過程和方法目標(biāo):經(jīng)歷一次函數(shù)、正比例函數(shù)的形成過程,培養(yǎng)學(xué)生的觀察能力和總結(jié)歸納能力。 情感和態(tài)度目標(biāo):運(yùn)用函數(shù)可以解決生活中的一些復(fù)雜問題,使學(xué)生體會(huì)到了數(shù)學(xué)的使用價(jià)值,同時(shí)也激發(fā)了學(xué)生的學(xué)習(xí)興趣。 3、教學(xué)重難點(diǎn) 本節(jié)教學(xué)重點(diǎn)是一次函數(shù)、正比例函數(shù)的概念和解析式,由于例2的問題情境比較復(fù)雜,學(xué)生缺乏這方面的經(jīng)驗(yàn),是本節(jié)教學(xué)的難點(diǎn)。 二、教法學(xué)法分析 八年級(jí)的學(xué)生具備一定的歸納總結(jié)和表達(dá)能力,所以本節(jié)課采用創(chuàng)設(shè)情境,歸納總結(jié)和自主探索的學(xué)習(xí)方式,讓學(xué)生積極主動(dòng)地參與到學(xué)習(xí)活動(dòng)中去,成為學(xué)習(xí)的主體,同時(shí)教師引導(dǎo)性講解也是不可缺少的教學(xué)手段。根據(jù)教材的特點(diǎn),為了更有效地突出重點(diǎn),突破難點(diǎn),采用了現(xiàn)代教學(xué)技術(shù)-多媒體和實(shí)物投影。 三、教學(xué)過程分析 本節(jié)教學(xué)過程分為:創(chuàng)設(shè)情境,引入新課歸納總結(jié),得出概念運(yùn)用概念體驗(yàn)成功梳理概括,歸納小結(jié)布置作業(yè),鞏固提高。 為了引入新課,我創(chuàng)設(shè)了以下四個(gè)問題情境,請(qǐng)學(xué)生列出函數(shù)關(guān)系式: (1)梨子的單價(jià)為6元/千克,買t千克梨子需m元錢,則m與t的函數(shù)關(guān)系式為m=6t. (2)小明站在廣場(chǎng)中心,記向東為正,若他以2千米/時(shí)的速度向正西方向行走x小時(shí),則他離開廣場(chǎng)中心的距離y與x之間的函數(shù)關(guān)系式為y=-2x. (3)小芳的儲(chǔ)蓄罐里原來有3元錢,現(xiàn)在她打算每天存入儲(chǔ)蓄罐2元錢,則x天后小芳的儲(chǔ)蓄罐里有y元錢,那么y與x之間的函數(shù)關(guān)系式為y=2x+3. (4)游泳池里原有水936立方米,現(xiàn)以每小時(shí)312立方米的速度將水放出,設(shè)放水時(shí)間為t時(shí),游泳池內(nèi)的存水量為Q立方米,則Q關(guān)于是t的函數(shù)關(guān)系式為Q=936-312t. 然后請(qǐng)學(xué)生觀察這些函數(shù),它們有哪些共同特征? m=6t;y=-2x;y=2x+3;Q=936-312t 學(xué)生們各抒己見,最后由教師引導(dǎo)學(xué)生得出:它們中含自變量的代數(shù)式都是整式,并且自變量的次數(shù)都是一次。 然后再問:你們能否用一條一般式來表示它們的共同特點(diǎn)?學(xué)生可能用兩條一般式來表示:y=ax與y=bx+c(因?yàn)檫@節(jié)課我已上過)。教師對(duì)兩條都進(jìn)行肯定,同時(shí)追問;這兩條能否選擇一條呢?經(jīng)過討論,最后確定式子y=kx+b為能代表共同特征的解析式,我們稱之為一次函數(shù),今天這節(jié)課我們就來學(xué)習(xí)一次函數(shù)。 這樣通過創(chuàng)設(shè)問題情境,讓學(xué)生通過比較函數(shù)解析式的具體特征,引出一次函數(shù),提出了課題,讓學(xué)生感受到一次函數(shù)存在于生活中,與我們并不陌生,增強(qiáng)了學(xué)生學(xué)好本節(jié)課的信心,同時(shí)也為一次函數(shù)概念的落實(shí)打下基礎(chǔ)。 提出課題后,教師說明:一般地,函數(shù)y=kx+b就叫做一次函數(shù)。然后問學(xué)生:作為一次函數(shù)的解析式y(tǒng)=kx+b,在y、k、x、b中,哪些是常量,哪些是變量?哪一個(gè)是自變量?哪個(gè)是自變量的函數(shù)?很明顯,x、y是變量,其中自變量是x,y是x的函數(shù),k、b是常量。那么對(duì)于一般的一次函數(shù),自變量x的取值范圍是什么?k、b能取任何值嗎?很明顯,x可取全體實(shí)數(shù),k、b都是常數(shù),但k0,因?yàn)槿绻鹝=0,那么kx=0,就不是一次函數(shù)了,所以一次函數(shù)的一般式后面應(yīng)添上k、b都是常數(shù),且k0,這里的k叫做比例系數(shù)。那么b可以等于0嗎?當(dāng)然可以,b=0就是引例中前2條式子的一般式,由此可知,當(dāng)b=0時(shí),函數(shù)就成了y=kx,它是特殊的一次函數(shù),我們稱之為正比例函數(shù),其中的常數(shù)k也叫做比例系數(shù)。 由于一次函數(shù)和正比例函數(shù)的概念是本節(jié)課的重點(diǎn),所以得出概念后,教師還應(yīng)對(duì)概念進(jìn)行強(qiáng)調(diào):一次函數(shù)的一次指的是自變量x的指數(shù)是1次;比例系數(shù)k不能為0,但既可取正數(shù),也可取負(fù)數(shù);b可以為任何實(shí)數(shù),當(dāng)它取0時(shí)為正比例函數(shù),也可以這樣說:所有形如y=kx+b(k0)的函數(shù)都是一次函數(shù),反過來,所有的一次函數(shù)都可以寫成y=kx+b的形式。同理,所有形如y=kx(k0)的式子都是正比例函數(shù),反過來,所有的正比例函數(shù)都可以寫成y=kx形式。 為了及時(shí)鞏固概念,教師以快速搶答的形式讓學(xué)生完成書上做一做: 做一做:下列函數(shù)中,哪些是一次函數(shù),哪些是正比例函數(shù)?系數(shù)k和常數(shù)項(xiàng)b的值各是多少? c=2r;y=x+200;t=;y=2(3-x);s=x(50-x) 做完此題教師應(yīng)強(qiáng)調(diào):中為常數(shù),所以比例系數(shù)為2;、應(yīng)先化,簡,鞏固了一次函數(shù)的概念,此時(shí)出示例1,學(xué)生就顯得比較輕松。 例1:求出下列各題中x與y之間的關(guān)系式,并判斷y是否為x的一次函數(shù),是否為正比例函數(shù)? 某農(nóng)場(chǎng)種植玉米,每平方米種玉米6株,玉米株數(shù)y與種植面積x(m2)之間的關(guān)系。 正方形周長x與面積y之間的關(guān)系。 假定某種儲(chǔ)蓄的月利率是0.16%,存入1000元本金后,本息和y(元)與所存月數(shù)x之間的關(guān)系。 例1應(yīng)由學(xué)生口答,教師板書,判斷是否屬于一次函數(shù)應(yīng)嚴(yán)格按照概念中的一般式,通過本例還讓學(xué)生弄清楚了正比例函數(shù)都是一次函數(shù),而一次函數(shù)不一定都是正比例函數(shù)。同時(shí)也體會(huì)到了根據(jù)題中的數(shù)量關(guān)系可直接列出一次函數(shù)解析式。如果班里學(xué)生比較優(yōu)秀,也可請(qǐng)大家模仿例1自己編一個(gè)例子,寫出函數(shù)關(guān)系式,并判斷寫出的函數(shù)關(guān)系式屬于哪種類型。這種編寫具有一定的難度,教師對(duì)于學(xué)生的一點(diǎn)點(diǎn)閃光點(diǎn)都要予以肯定。 接著教師出示練習(xí)1:已知正比例函數(shù)y=kx,當(dāng)x=-2時(shí),y=6,求這個(gè)正比例函數(shù)的解析式。 此題是書上課內(nèi)練習(xí)改編過來的,書上的原題是求比例系數(shù)k,但我認(rèn)為求函數(shù)解析式層次更高一些,同時(shí)為下節(jié)課的待定系數(shù)法打下基礎(chǔ)。 此題可以這樣分析:要想求這個(gè)正比例函數(shù)解析式,必須求出k的值,只要把一組x、y的值代入y=kx,得到一條以k為數(shù)的一元一次方程,即可求出k的值,然后就可寫出解析式,建議教師板書過程,如果班里學(xué)生比較優(yōu)秀,教師也可提到:如何求y=kx+b的解析式呢?同理可得只要求出k、b的值就可以了,k、b是兩個(gè)數(shù),只要兩組x、y的值代入,聯(lián)立二元一次方程組即可求出k、b的值,然后就可寫出解析式,具體的操作下節(jié)課再學(xué)。 以上設(shè)計(jì)使學(xué)生明白了如何求一次函數(shù)解析式及判斷某條函數(shù)關(guān)系式是否為一次函數(shù)的方法,但大家都知道,學(xué)習(xí)了新知識(shí),就是為了解決實(shí)際問題。 由于例2是本節(jié)課的教學(xué)難點(diǎn),里面的問題情景比較復(fù)雜,學(xué)生一下子難以適應(yīng),于是我對(duì)例2進(jìn)行這樣處理: 先請(qǐng)同學(xué)們看屏幕:教師用多媒體出示一份國家20XX年1月1日起實(shí)施的有關(guān)個(gè)人所得稅的有關(guān)規(guī)定的材料,同時(shí)還附上一份稅率表。 然后問學(xué)生:哪位同學(xué)知道什么叫全月應(yīng)納稅所得額,如果有學(xué)生講出來更好,如果沒人講出來,教師自己介紹:應(yīng)納稅所得額是指月工資中,扣除國家規(guī)定的免稅部分1600元后的剩余部分。 為了提高學(xué)生的學(xué)習(xí)興趣,教師說:你想知道我們班數(shù)學(xué)老師和科學(xué)老師每月應(yīng)繳個(gè)人所得稅多少嗎?老師們的隱私同學(xué)們是最想知道的,于是急著解決問題。 我班數(shù)學(xué)教師的工資為每月2400元,科學(xué)老師的工資為每月2600元,問他倆每月應(yīng)繳個(gè)人所得稅多少元? 相信學(xué)生很快就有答案(因?yàn)檫@節(jié)課我上過),并且方法幾乎一致,都是用直接列算式的方法。教師對(duì)學(xué)生們的結(jié)果表示肯定,接著問:如果要計(jì)算10個(gè)工資均在2100元3600元之間的教師每月應(yīng)繳的個(gè)人所得稅呢?還用直接列算式的方法嗎?如果工資均在10000元以上呢? 經(jīng)過思考、討論,發(fā)現(xiàn)工資額越大,計(jì)算應(yīng)繳個(gè)人所得稅的累計(jì)越麻煩,于是討論有沒有一種比較簡單方法,如果有類似于計(jì)算公式的,把工資額直接代入就可求出的,那該多好啊! 此時(shí)教師出示例2:按國家20XX年1月1日起實(shí)施的有關(guān)個(gè)人所得稅的規(guī)定,全月應(yīng)納稅所得額不超過500元的稅率為5%,超過500元至2000元部分的稅率為10%. (1)設(shè)全月應(yīng)納稅所得額為x元,且500 (2)小明的媽媽的工資為每月3400元,小聰媽媽的工資為每月3600元,問她倆每月應(yīng)繳個(gè)人所得稅多少元? 有了剛才的鋪墊,學(xué)生對(duì)此題有了深入的理解,就不再害怕了,教師可先由學(xué)生回答,再自己補(bǔ)充??梢赃@樣分析:由于500 此題的設(shè)計(jì)使學(xué)生體會(huì)到了運(yùn)用函數(shù)模型解決實(shí)際問題的重要性,但某些愛動(dòng)腦筋的同學(xué)可能會(huì)問:雖然運(yùn)用函數(shù)可以解決一些實(shí)際問題,但方程也是解決實(shí)際問題的重要數(shù)學(xué)模型,它們有什么區(qū)別嗎?怎樣區(qū)別?拿到一道題怎么會(huì)想到用函數(shù)來解決,簡單地說,如果沒有特殊說明,能用方程解決的問題就用方程來解決,不能用方程來解決的問題就馬上想到用函數(shù)來解決。但如何建立函數(shù)模型,具體的方法我們下節(jié)課再學(xué)習(xí)。 本例的設(shè)計(jì)使學(xué)生既了解了國家的政策法規(guī),又學(xué)會(huì)了用函數(shù)來解決實(shí)際問題,通過計(jì)算老師們的應(yīng)繳個(gè)人所得稅,讓學(xué)生初步體會(huì)了個(gè)人所得稅的計(jì)算方法,再假設(shè)要求多數(shù)人的所得稅,激發(fā)了學(xué)生探求好方法的欲望,使學(xué)生體會(huì)到了函數(shù)的作用。 為了使學(xué)生學(xué)有所用,就來完成書上課內(nèi)練習(xí)2. 最后在教師提問的基礎(chǔ)上,讓學(xué)生對(duì)本節(jié)內(nèi)容進(jìn)行歸納總結(jié)。 本節(jié)課的作業(yè)是分層布置:A組、B組、C組分
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- GB/T 45081-2024人工智能管理體系
- 上海私房買賣合同范例
- 商標(biāo)代加工合同范例
- 廚電安裝合同范例
- 聚脲涂料施工方案
- 勞務(wù)用工合同范例派遣
- 新疆勞動(dòng)合同范例
- app系統(tǒng)使用合同范例
- 2025年鄂爾多斯貨運(yùn)上崗證考試題庫1387題
- 新藝人合同范例
- 5S提升管理報(bào)告
- 電力建設(shè)“五新”推廣應(yīng)用信息目錄(試行)
- 冬至活動(dòng)的主持詞有哪些冬至活動(dòng)主持詞開場(chǎng)白優(yōu)質(zhì)
- 2023年法律文書形成性考核冊(cè)答案
- 保密警示教育課
- 家庭教育指導(dǎo)師考試復(fù)習(xí)(重點(diǎn))題庫(150題)
- QC成果提高疊合板安裝合格率
- 7漆洪波教授解讀:ACOG妊娠期高血壓和子癇前期指南2023年版
- 正庚烷-正辛烷連續(xù)精餾塔設(shè)計(jì)
- 2023年江蘇無錫市屆普通高中學(xué)業(yè)水平測(cè)試模擬考試地理試卷及答案
- 會(huì)計(jì)人員年終個(gè)人工作總結(jié)(4篇)
評(píng)論
0/150
提交評(píng)論