重郵大學物理英文版 最新版本ppt課件_第1頁
重郵大學物理英文版 最新版本ppt課件_第2頁
重郵大學物理英文版 最新版本ppt課件_第3頁
重郵大學物理英文版 最新版本ppt課件_第4頁
重郵大學物理英文版 最新版本ppt課件_第5頁
已閱讀5頁,還剩43頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

Thenetvibration Review Superpositionofvibration Chapter2 Mechanicalwaves Waves adisturbancetravelsawayfromitssource Waterwaves soundwaves radiowaves X rays Waves MechanicalWaves Thedisturbanceispropagatingthroughamedium electromagneticWaves Donotneedamedium Waves TransverseWaves Themediumoscillatesperpendiculartothedirectionthewaveismoving LongitudinalWaves Waterwave Themediumoscillatesinthesamedirectionasthewaveismoving soundwave MechanicalWaves Thepropagationofadisturbanceinamedium Theconditionsallthemechanicalwavesrequire 1 Somesourceofdisturbance 2 Amediumthatcanbedisturbed 3 Somephysicalmechanismthroughwhichparticlescaninfluenceoneanother Theessenceofmechanicalwaves Thedisturbanceistransferredthroughspace butthematterdoesnot Thepropagationofthedisturbancealsomeansatransferofenergy WavesonaString 11 2 1harmonicwaves Thecharacteristicofharmonicwaves Everymediumelementoscillatesaroundtheequilibriumpositioninsimpleharmonicmotion butthewavepropagatesawayfromthesourceofdisturbance Thepropagationofsimpleharmonicmotioninspace 2 Thephaseoftheparticlewhichoscillateslaterissmaller medium disturbance v 18 y x t Acos wt kx A amplitude angularfrequency k wavenumber 2 harmonicwavefunction Assuming initialphaseiszeroatx 0andt 0 Generally Thetransversedisplacementisnotzeroatx 0andt 0 Phaseconstant Canbedeterminedfromtheinitialconditions Simpleharmonicvibrationfunction Thevibrationyasafunctionoftimet Theharmonicwavefunction Thewavefunctiony x t representstheycoordinateofanypointPlocatedatpositionxatanytimet Twovariablesxandt Iftisfixed thewavefunctionyasafunctionofx calledwaveform definesacurverepresentingtheactualgeometricshapeofthepulseatthattime AmplitudeandWavelength Wavelength Thedistancebetweenidenticalpointsonthewave AmplitudeA Themaximumdisplacementofapointonthewave 19 PeriodandVelocity 21 WaveProperties Thespeedofawaveisaconstantthatdependsonlyonthemedium notonamplitude wavelengthorperiod similartoSHM andTarerelated uTor 2 u or u f Example2 1 1 Supposetheharmonicvibrationfunctionoforiginatt Find theharmonicwavefunctionofpointPatt Solution thetimeforthevibrationtoarrivepointPis ThevibrationatpointPattisidenticalwiththatofpointOatt t ThenwehavethewavefunctionofpointP Example1 1 2 Supposetheharmonicvibrationfunctionoforiginatt Find theharmonicwavefunctionofpointP att ThevibrationatpointP attisidenticalwiththatofpointOatt t Therefore theharmonicwavefunctioncanbewrittenas Or Ifthewavetravelsleft use xsubstitutex TheparametersA uofacertainplanarcosinewaveareknown Calculatingt 0fromthemomentofthefollowingfigure 1 writethewavefunctiontakingOandPastheoriginrespectively 2 Findthemagnitudeanddirectionofthespeedatx1 8andx2 3 8whent 0 Example2 1 3 Solution 1 takingOastheorigin ThevibrationfunctionofOis Whent 0 then Thevelocityofx 0att 0 Thesimpleharmonicvibrationcurve Thevelocityatacertaintime istheslopeofthetangentlineofthatpoint Theharmonicwavecurve displacementasafunctionofx t t1 t t2 t2 t1 Iftheslopeofacertainpointofthecurvey x 0 thevelocityatthispoint 0 thewavetravelsrightwards Solution 1 takingOastheorigin ThevibrationfunctionofOis Whent 0 then Thevelocityofx 0att 0 thus Therefore thevibrationfunctionofOis ThewavefunctionofxtakingOasoriginis 1 takingPastheorigin ThevibrationfunctionofPis Whent 0 then AnyoneisOk wechoose ThewavefunctionofxtakingPasoriginis ThewavefunctionofxtakingOasoriginis ThewavefunctionofxtakingPasoriginis Wemustidentifytheoriginpointclearly Thephaseconstantsaredifferentifwetakevariousoriginalpoints 2 Findthemagnitudeanddirectionofthespeedatx1 8andx2 3 8whent 0 Thevelocityatxpoint Becausethevibrationis Thevelocityatxpointattmoment Takex 8 t 0intotheaboveequation Alongthenegativeyaxis Takex 3 8 t 0intotheaboveequation Alongthepositiveyaxis 2 2wavespeed phasespeedu Thespeedofawaveisaconstantthatdependsonlyonthemedium andTarerelated Note thespeedofthewaveuisdifferentfromthevibrationvelocityofacertainmediumelementv Thespeedofawaveisaconstantthatdependsonlyonthemedium A Wavepropagatinginliquid gas fluid B bulkelasticmodulus thedensityofthemedium B Wavepropagatinginsolid 1 Transversewave G shearelasticmodulus 2 longitudinalwave Y Youngmodulus 2 3energyofharmonicwaves Mechanicalwave Thedisturbanceispropagatingthroughamedium disturbance Vibrationstate phase energy Energyoftravelingharmonicwaves Thewavefunction Thewaveform att t1 SegmentABinthemedium ThemassofAB themassdensityofthemedium ThekineticenergyofAB ThepotentialenergyofAB T tension Themagnitudeandphaseofkineticenergyandpotentialenergyareidenticalatanytime Note theenergydifferencebetweenwaveandvibration waveform Maximumdeformation Maximumvelocity ThemechanicalenergyofAB Mechanicalenergyofwavechangeswithtimeperiodically Mechanicalenergyofsimpleharmonicvibrationkeepsconstant energydensityofwave Area massdensityofthemedium averageenergydensityofwave energyflowofwave Theenergypassesthroughunitareainunittime energyflowofwavechangeswith

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論