




已閱讀5頁,還剩25頁未讀, 繼續(xù)免費閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)
文檔簡介
.,銳角三角函數(shù)(2),第二十八章銳角三角函數(shù),.,解疑,1、一個直角三角形的兩邊分別為3和4,求較大銳角的正弦值。,4,3,4,3,5,分類思想,.,探究,一、如圖,在RtABC中,C=90。,A角對邊a,A角鄰邊b,斜邊c,當(dāng)A確定時,A的對邊與斜邊的比就確定,此時,其他邊之間的比是否也確定呢?,鄰邊與斜邊,.,探究,二、如圖,RtABC和RtABC中,C=C=90,A=A=,那么,與有什么關(guān)系?,.,探究,二、如圖,在RtABC中,C=90。,A角對邊a,A角鄰邊b,斜邊c,當(dāng)A確定時,的比是否確定呢?,對邊與鄰邊,.,如圖,在RtABC中,C90,,我們把銳角A的鄰邊與斜邊的比叫做A的余弦(cosine),記作cosA,即,我們把銳角A的對邊與鄰邊的比叫做A的正切(tangent),記作tanA,即,概念學(xué)習(xí),A角對邊a,A角鄰邊b,斜邊c,.,銳角A的正弦、余弦、正切都叫做A的銳角三角函數(shù).,A角對邊a,A角鄰邊b,斜邊c,.,例1.在RtABC中,C90,AC=12,AB=13.sinA=_,cosA=_,tanA=_,sinB=_,cosB=_,tanB=_.,解:由勾股定理,加深理解,.,在RtABC中,C90,AC=2,BC=3.sinA=_,cosA=_,tanA=_,sinB=_,cosB=_,tanB=_.,解:由勾股定理,本領(lǐng)大不大悟性來當(dāng)家,在直角三角形中,如果已知兩條邊的長度,即可求出所有銳角的正弦、余弦和正切值。,加深理解,檢測1:,Rt三邊中知二求一,運算結(jié)果化為最簡二次根式,互余角的三角函數(shù)之間的關(guān)系1.,(1)互余兩角的正弦與余弦有何關(guān)系?,相等,sinA=cosB=cos(90-A)cosA=sinB=sin(90-A),.,鞏固,如果是銳角,且cos=,那么sin(90-)的值等于(C),A.B.,C.D.,.,例如圖,在RtABC中,C90,BC=6,求cosA和tanB的值,變一變,遇比設(shè)元,方法感悟:當(dāng)不知線段長,已知線段比時,我們通常設(shè)每份為k,從而引入?yún)?shù)k來解決問題,.,A,B,C,8,解:,如圖,在RtABC中,C90,tanA,求sinA,cosB的值,我能行,在直角三角形中,如果已知一邊長及一個銳角的某個三角函數(shù)值,即可求出其它的所有銳角三角函數(shù)值。,檢測2:,.,鞏固,3、如圖,分別求出下列兩個直角三角形兩個銳角的余弦值和正切值。,13,12,3,2,.,鞏固,4、如圖,在RtABC中,如果各邊長都擴(kuò)大2倍,那么銳角A的余弦值和正切值有什么變化?為什么?,.,鞏固,5、直角三角形的斜邊和一條直角邊的比為2524,則其中最小的角的正弦值為。,.,如圖,在ABC中,AB=AC=4,BC=6.求cosB及tanB的值.,解:過點A作ADBC于D.,又ABAC,BD=CD=3,在RtABD中,tanB=,求銳角的三角函數(shù)值的問題,當(dāng)圖形中沒有直角三角形時,可以用恰當(dāng)?shù)姆椒?gòu)造直角三角形.,范例學(xué)習(xí),作垂線是構(gòu)造直角三角形常用方法.等腰三角形常作底邊上的高線。,.,如圖,在84的矩形網(wǎng)格中,每格小正方形的邊長都是1,若ABC的三個頂點在圖中相應(yīng)的格點上,則tanACB的值為(),D,A,檢測3:,.,已知點P(3,4)是邊OA上的一點,求角的三個三角函數(shù)值。,A,7、在平面直角坐標(biāo)系中,有一條直線l:,l與x軸的正半軸的夾角為,求sin的值。,p(a,b),檢測4:,.,1、正弦、余弦、正切是在直角三角形中定義的,要注意數(shù)形結(jié)合,構(gòu)造直角三角形,2、正弦、余弦、正切是一個比值(數(shù)值),3、正弦、余弦、正切的大小只與銳角的大小有關(guān),而與直角三角形的大小無關(guān),.,范例,例2、已知銳角的始邊在x軸的正半軸上(頂點在原點),終邊上一點的坐標(biāo)為(2,3),求角的三個三角函數(shù)值。,P(2,3),.,例:如圖,ACB=90,CDAB,垂足為D,請?zhí)顚憟D中線段在括號內(nèi).,AD,AB,BD,AC,范例,(3)若AD=6,CD=8.求cosA,tanB的值,tanB=tan3=,利用等角轉(zhuǎn)化求三角函數(shù)值,6,8,10,.,1如圖,在ABC中,以AB為直徑作O,O恰好經(jīng)過點C,已知AB5,AC4則cosB=,D,變式題1:若點D為O上另一點,如圖則tanD=_.,方法感悟:當(dāng)題中條件沒有直角或所求角不在直角三角形中時,我們常構(gòu)造直角或利用等角轉(zhuǎn)化到直角三角形中來解決問題,檢測5:,.,2(2017年安順市)如圖,點E(0,4),O(0,0),C(5,0)在A上,BE是A上的一條弦,則tanB=.,方法感悟:當(dāng)題中所求角不是直角三角形中的角時,我們常構(gòu)造直角三角形或轉(zhuǎn)化角,在直角三角形中解決問題,拓展關(guān),.,3.如圖,tanA=_,方法感悟:當(dāng)題中所求角不是直角三角形中的角時,我們常構(gòu)造直角三角形或轉(zhuǎn)化角,在直角三角形中解決問題,拓展關(guān),.,1、正弦、余弦、正切是在直角三角形中定義的,要注意數(shù)形結(jié)合,構(gòu)造直角三角形,2、正弦、余弦、正切是一個比值(數(shù)值),3、正弦、余弦、正切的大小只與銳角的大小有關(guān),而與直角三角形的大小無關(guān),.,我解決過的每一個問題都成為日后用以解決其他問題的法則。笛卡爾,.,鞏固,.,鞏固,8、如圖,在RtABC中,C=90,,AC=8,tanA=,求sinA、cosB的值。,.,鞏固,9、如圖,為測河兩岸相對兩電線桿
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 武漢光谷職業(yè)學(xué)院《現(xiàn)代統(tǒng)計方法》2023-2024學(xué)年第二學(xué)期期末試卷
- 民辦萬博科技職業(yè)學(xué)院《當(dāng)代西方政治思潮》2023-2024學(xué)年第二學(xué)期期末試卷
- 教育領(lǐng)域中的技術(shù)創(chuàng)新從評估到落地
- 廣東水利電力職業(yè)技術(shù)學(xué)院《民航播音藝術(shù)》2023-2024學(xué)年第二學(xué)期期末試卷
- 山東科技大學(xué)《生物醫(yī)學(xué)傳感器實驗》2023-2024學(xué)年第二學(xué)期期末試卷
- 提升孩子學(xué)習(xí)動力教育心理學(xué)的策略與方法
- 河南工業(yè)職業(yè)技術(shù)學(xué)院《工程計價》2023-2024學(xué)年第二學(xué)期期末試卷
- 醫(yī)療旅游業(yè)AI智能設(shè)備行業(yè)深度調(diào)研及發(fā)展項目商業(yè)計劃書
- 基于科技創(chuàng)新的教育新思路-使用毛細(xì)心組織品探究未來的可能
- 靶向給藥系統(tǒng)創(chuàng)新企業(yè)制定與實施新質(zhì)生產(chǎn)力項目商業(yè)計劃書
- 北師大版二年級數(shù)學(xué)下冊各單元測試卷
- 招生就業(yè)處2025年工作計劃
- 【MOOC】外國文學(xué)經(jīng)典導(dǎo)讀-西北大學(xué) 中國大學(xué)慕課MOOC答案
- 醫(yī)院供電合同
- 市場營銷學(xué)練習(xí)及答案(吳健安)
- 2023水電工程費用構(gòu)成及概(估)算費用標(biāo)準(zhǔn)
- Unit2 Bridging Cultures Discovering useful structures 課件英語人教版(2019)選擇性必修第二冊
- 《土地復(fù)墾介紹》課件
- 天然氣管道安裝施工組織方案
- 《能源培訓(xùn)講義》課件
- GB/T 12996-2024電動輪椅車
評論
0/150
提交評論