



全文預(yù)覽已結(jié)束
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
解剖高考對導(dǎo)數(shù)的考查要求高考對導(dǎo)數(shù)的考查要求是:了解導(dǎo)數(shù)的實際背景(如瞬時速度、加速度、光滑曲線切線的斜率等),掌握函數(shù)在一點處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義,理解導(dǎo)數(shù)的概念;熟記導(dǎo)數(shù)的基本公式,掌握兩個函數(shù)和、差、積、商的求導(dǎo)法則,了解復(fù)合函數(shù)的求導(dǎo)法則,會求某些簡單函數(shù)的導(dǎo)數(shù);理解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系,了解可導(dǎo)函數(shù)在某點取得極值時的必要條件和充分條件(導(dǎo)數(shù)在極值點兩側(cè)異號),會求一些實際問題(一般指單峰函數(shù))的最大值和最小值考點1 考查導(dǎo)函數(shù)與原函數(shù)圖象間關(guān)系例1.已知函數(shù)的圖象如右圖所示(其中是函數(shù)的導(dǎo)函數(shù)),下面四個圖象中的圖象大致是( )O-221-1-212O-2-221-112O-241-1-212O-22-124ABCD( )( )( )( )解析:由圖象可知:在上小于等于零,故原函數(shù)在上為減函數(shù),故選C評注:函數(shù)圖象提供了很多信息,但要抓住關(guān)鍵特點,如導(dǎo)數(shù)為零的點、導(dǎo)數(shù)為正值或負(fù)值的區(qū)間等考點2 考查導(dǎo)數(shù)的幾何意義例2.曲線在點處的切線方程是 解析:設(shè)切線的斜率為,因為,故所以所求的切線的點斜式方程為:,化簡得:評注:導(dǎo)數(shù)的幾何意義是曲線數(shù)在某點處切線的斜率所以求切線的方程可通過求導(dǎo)數(shù)先得到斜率,再由切點利用點斜式方程得到考點3 考查導(dǎo)數(shù)的定義的應(yīng)用例3.已知,為正整數(shù),設(shè),證明證明:因為:,所以評注:此題考查導(dǎo)數(shù)概念性質(zhì)的直接應(yīng)用導(dǎo)數(shù)的定義為:設(shè)函數(shù)在點處及其附近有定義,并且在該點函數(shù)增量與自變量增量的比值,當(dāng)?shù)臉O限存在,則稱此極限為函數(shù)在點處的導(dǎo)數(shù),即考點4 考查利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性例4.已知向量,若函數(shù)在區(qū)間上是增函數(shù),求t的取值范圍解析:依向量數(shù)量積的定義:故:,若在上是增函數(shù),則在上可設(shè)的圖象是開口向下的拋物線,由根的分布原理可知:當(dāng)且僅當(dāng),且,上滿足,即在上是增函數(shù)綜上所述的取值范圍是評注:此題考查的是可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系和數(shù)形結(jié)合思想的應(yīng)用判斷的法則是:設(shè)在某個區(qū)間內(nèi)可導(dǎo),若,則為增函數(shù);若,則為減函數(shù),反之亦然考點5 考查導(dǎo)數(shù)在函數(shù)極點處的性質(zhì)例5.已知,討論函數(shù)的極值點的個數(shù)解析:令=0得(1)當(dāng)即4時有兩個不同的實根,,不妨設(shè)0,因此無極值(3)當(dāng)0即04時無實數(shù)根,即,故為增函數(shù),此時無極值綜上所述:當(dāng)無極值點評注:此題考查的是可導(dǎo)函數(shù)在某點取得極值的充要條件,即設(shè)在某個區(qū)間內(nèi)可導(dǎo),函數(shù)在某點取得極值的充要條件是該點的導(dǎo)數(shù)為零且在該點兩側(cè)的導(dǎo)數(shù)值異號.考點6 考查導(dǎo)數(shù)的實際應(yīng)用例6.用長為90cm,寬為48cm的長方形鐵皮做一個無蓋的容器,先在四角分別截去一個小正方形,然后把四邊翻轉(zhuǎn)90角,再焊接而成(如圖),問該容器的高為多少時,容器的容積最大?最大容積是多少?解析:設(shè)容器的高為,容器的體積為,則,化簡得:, ,令可得:,(舍)當(dāng)時, 時,所以當(dāng)時,有極大值.又,所以當(dāng)時,V有最大值評注:在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 古詩《風(fēng)》教學(xué)課件
- 【金華】2025年浙江金華市婺城區(qū)人民法院招錄編外工作人員5人筆試歷年典型考題及考點剖析附帶答案詳解
- 【瀘州】2025年四川瀘州市江陽區(qū)事業(yè)單位招聘工作人員50人筆試歷年典型考題及考點剖析附帶答案詳解
- 【開封】2025年河南招才引智創(chuàng)新發(fā)展大會開封市祥符區(qū)事業(yè)單位引進工作人員29人筆試歷年典型考題及考點剖析附帶答案詳解
- 新媒體公司美食宣傳片策劃方案
- 春耕生產(chǎn)黨員活動方案
- 無人售酒機推廣活動方案
- 無花果科普活動策劃方案
- 春季婦科活動方案
- 教育案例分析活動方案
- 福建省廈門市雙十中學(xué)2025屆七年級生物第二學(xué)期期末聯(lián)考模擬試題含解析
- 【小學(xué)】新蘇教版小學(xué)數(shù)學(xué)四年級下冊暑假每日一練(02):計算題-應(yīng)用題(含答案)
- 2025豬藍耳病防控及凈化指南(第三版)
- TCUWA20059-2022城鎮(zhèn)供水管網(wǎng)模型構(gòu)建與應(yīng)用技術(shù)規(guī)程
- 2025至2030中國壓縮空氣儲能產(chǎn)業(yè)現(xiàn)狀調(diào)查及項目投資策略建議報告
- 三臺縣2024-2025學(xué)年小學(xué)六年級數(shù)學(xué)畢業(yè)檢測指導(dǎo)卷含解析
- 宅基地互換合同協(xié)議書范本
- 2025人教版數(shù)學(xué)四年級下冊 第一單元《四則運算》單元分層作業(yè)
- 園藝植物育種學(xué)知到課后答案智慧樹章節(jié)測試答案2025年春浙江大學(xué)
- 集團公司下屬子公司管理制度
- 2025年湖南高速鐵路職業(yè)技術(shù)學(xué)院單招職業(yè)技能考試題庫帶答案
評論
0/150
提交評論