

免費(fèi)預(yù)覽已結(jié)束,剩余1頁可下載查看
下載本文檔
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
高一數(shù)學(xué)第三章 第一節(jié)直線的傾斜角和斜率教案第三章 直線與方程3.1.1直線的傾斜角和斜率教學(xué)目標(biāo): 知識(shí)與技能正確理解直線的傾斜角和斜率的概念理解直線的傾斜角的唯一性.理解直線的斜率的存在性.斜率公式的推導(dǎo)過程,掌握過兩點(diǎn)的直線的斜率公式情感態(tài)度與價(jià)值觀 (1) 通過直線的傾斜角概念的引入學(xué)習(xí)和直線傾斜角與斜率關(guān)系的揭示,培養(yǎng)學(xué)生觀察、探索能力,運(yùn)用數(shù)學(xué)語言表達(dá)能力,數(shù)學(xué)交流與評(píng)價(jià)能力(2) 通過斜率概念的建立和斜率公式的推導(dǎo),幫助學(xué)生進(jìn)一步理解數(shù)形結(jié)合思想,培養(yǎng)學(xué)生樹立辯證統(tǒng)一的觀點(diǎn),培養(yǎng)學(xué)生形成嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度和求簡的數(shù)學(xué)精神重點(diǎn)與難點(diǎn): 直線的傾斜角、斜率的概念和公式.教學(xué)用具:計(jì)算機(jī)教學(xué)方法:啟發(fā)、引導(dǎo)、討論.教學(xué)過程:直線的傾斜角的概念我們知道, 經(jīng)過兩點(diǎn)有且只有(確定)一條直線. 那么, 經(jīng)過一點(diǎn)P的直線l的位置能確定嗎? 如圖, 過一點(diǎn)P可以作無數(shù)多條直線a,b,c, 易見,答案是否定的.這些直線有什么聯(lián)系呢? (1)它們都經(jīng)過點(diǎn)P. (2)它們的傾斜程度不同. 怎樣描述這種傾斜程度的不同?引入直線的傾斜角的概念:當(dāng)直線l與x軸相交時(shí), 取x軸作為基準(zhǔn), x軸正向與直線l向上方向之間所成的角叫做直線l的傾斜角.特別地,當(dāng)直線l與x軸平行或重合時(shí), 規(guī)定= 0.問: 傾斜角的取值范圍是什么? 0180.當(dāng)直線l與x軸垂直時(shí), = 90.因?yàn)槠矫嬷苯亲鴺?biāo)系內(nèi)的每一條直線都有確定的傾斜程度, 引入直線的傾斜角之后, 我們就可以用傾斜角來表示平面直角坐標(biāo)系內(nèi)的每一條直線的傾斜程度.如圖, 直線abc, 那么它們的傾斜角相等嗎? 答案是肯定的.所以一個(gè)傾斜角不能確定一條直線.確定平面直角坐標(biāo)系內(nèi)的一條直線位置的幾何要素: 一個(gè)點(diǎn)P和一個(gè)傾斜角.(二)直線的斜率:一條直線的傾斜角(90)的正切值叫做這條直線的斜率,斜率常用小寫字母k表示,也就是 k = tan當(dāng)直線l與x軸平行或重合時(shí), =0, k = tan0=0;當(dāng)直線l與x軸垂直時(shí), = 90, k 不存在.由此可知, 一條直線l的傾斜角一定存在,但是斜率k不一定存在.例如, =45時(shí), k = tan45= 1; =135時(shí), k = tan135= tan(180 45) = - tan45= - 1.學(xué)習(xí)了斜率之后, 我們又可以用斜率來表示直線的傾斜程度. (三) 直線的斜率公式:給定兩點(diǎn)P1(x1,y1),P2(x2,y2),x1x2,如何用兩點(diǎn)的坐標(biāo)來表示直線P1P2的斜率?可用計(jì)算機(jī)作動(dòng)畫演示: 直線P1P2的四種情況, 并引導(dǎo)學(xué)生如何作輔助線,共同完成斜率公式的推導(dǎo).(略)斜率公式: 對(duì)于上面的斜率公式要注意下面四點(diǎn):(1) 當(dāng)x1=x2時(shí),公式右邊無意義,直線的斜率不存在,傾斜角= 90, 直線與x軸垂直;(2)k與P1、P2的順序無關(guān), 即y1,y2和x1,x2在公式中的前后次序可以同時(shí)交換, 但分子與分母不能交換; (3)斜率k可以不通過傾斜角而直接由直線上兩點(diǎn)的坐標(biāo)求得;(4) 當(dāng) y1=y2時(shí), 斜率k = 0, 直線的傾斜角=0,直線與x軸平行或重合. (5)求直線的傾斜角可以由直線上兩點(diǎn)的坐標(biāo)先求斜率而得到 (四)例題:例1 已知A(3, 2), B(-4, 1), C(0, -1), 求直線AB, BC, CA的斜率, 并判斷它們的傾斜角是鈍角還是銳角.(用計(jì)算機(jī)作直線, 圖略)分析: 已知兩點(diǎn)坐標(biāo), 而且x1x2, 由斜率公式代入即可求得k的值; 而當(dāng)k = tan0時(shí), 傾斜角是銳角; 而當(dāng)k = tan=0時(shí), 傾斜角是0.略解: 直線AB的斜率k1=1/70, 所以它的傾斜角是銳角; 直線BC的斜率k2=-0.50, 所以它的傾斜角是銳角.例2 在平面直角坐標(biāo)系中, 畫出經(jīng)過原點(diǎn)且斜率分別為1, -1, 2, 及-3的直線a, b, c, l.分析:要畫出經(jīng)過原點(diǎn)的直線a, 只要再找出a上的另外一點(diǎn)M. 而M的坐標(biāo)可以根據(jù)直線a的斜率確定; 或者k=tan=1是特殊值,所以也可以以原點(diǎn)為角的頂點(diǎn),x 軸的正半軸為角的一邊, 在x 軸的上方作45的角, 再把所作的這一邊反向延長成直線即可.略解: 設(shè)直線a上的另外一點(diǎn)M的坐標(biāo)為(x,y),根據(jù)斜率公式有 1=(y0)(x0) 所以 x = y 可令x = 1, 則y = 1, 于是點(diǎn)M的坐標(biāo)為(1,1).此時(shí)過原點(diǎn)和點(diǎn) M(1,1), 可作直線a. 同理, 可作直線b, c, l.(用計(jì)算機(jī)作動(dòng)畫演示畫直線過程) (五)練習(xí): P91 1. 2. 3. 4. (六)小結(jié): (1)直線的傾斜角和斜率的概念 (2) 直線的斜率公式. (七)課后作業(yè): P94 習(xí)題3.1 1. 3. (八)板書設(shè)計(jì):3.1.11直線傾斜角的概念 3.例1 練習(xí)1 練習(xí)32. 直線的斜率 4.例2 練習(xí)2 練習(xí)4 3.1.2兩條直線的平行與垂直()教學(xué)目標(biāo) (一)知識(shí)教學(xué)理解并掌握兩條直線平行與垂直的條件,會(huì)運(yùn)用條件判定兩直線是否平行或垂直.(二)能力訓(xùn)練通過探究兩直線平行或垂直的條件,培養(yǎng)學(xué)生運(yùn)用已有知識(shí)解決新問題的能力, 以及數(shù)形結(jié)合能力(三)學(xué)科滲透通過對(duì)兩直線平行與垂直的位置關(guān)系的研究,培養(yǎng)學(xué)生的成功意識(shí),合作交流的學(xué)習(xí)方式,激發(fā)學(xué)生的學(xué)習(xí)興趣 重點(diǎn):兩條直線平行和垂直的條件是重點(diǎn),要求學(xué)生能熟練掌握,并靈活運(yùn)用難點(diǎn):啟發(fā)學(xué)生, 把研究兩條直線的平行或垂直問題, 轉(zhuǎn)化為研究兩條直線的斜率的關(guān)系問題注意:對(duì)于兩條直線中有一條直線斜率不存在的情況, 在課堂上老師應(yīng)提醒學(xué)生注意解決好這個(gè)問題 教學(xué)過程 (一)先研究特殊情況下的兩條直線平行與垂直上一節(jié)課, 我們已經(jīng)學(xué)習(xí)了直線的傾斜角和斜率的概念, 而且知道,可以用傾斜角和斜率來表示直線相對(duì)于x軸的傾斜程度, 并推導(dǎo)出了斜率的坐標(biāo)計(jì)算公式. 現(xiàn)在, 我們來研究能否通過兩條直線的斜率來判斷兩條直線的平行或垂直討論: 兩條直線中有一條直線沒有斜率, (1)當(dāng)另一條直線的斜率也不存在時(shí),兩直線的傾斜角都為90,它們互相平行;(2)當(dāng)另一條直線的斜率為0時(shí),一條直線的傾斜角為90,另一條直線的傾斜角為0,兩直線互相垂直(二)兩條直線的斜率都存在時(shí), 兩直線的平行與垂直設(shè)直線 L1和L2的斜率分別為k1和k2. 我們知道, 兩條直線的平行或垂直是由兩條直線的方向決定的, 而兩條直線的方向又是由直線的傾斜角或斜率決定的. 所以我們下面要研究的問題是: 兩條互相平行或垂直的直線, 它們的斜率有什么關(guān)系?首先研究兩條直線互相平行(不重合)的情形如果L1L2(圖1-29),那么它們的傾斜角相等:1=2(借助計(jì)算機(jī), 讓學(xué)生通過度量, 感知1, 2的關(guān)系)tg1=tg2即 k1=k2 反過來,如果兩條直線的斜率相等: 即k1=k2,那么tg1=tg2由于01180, 0180,1=2又兩條直線不重合,L1L2結(jié)論: 兩條直線都有斜率而且不重合,如果它們平行,那么它們的斜率相等;反之,如果它們的斜率相等,那么它們平行,即注意: 上面的等價(jià)是在兩條直線不重合且斜率存在的前提下才成立的,缺少這個(gè)前提,結(jié)論并不成立即如果k1=k2, 那么一定有L1L2; 反之則不一定.下面我們研究兩條直線垂直的情形如果L1L2,這時(shí)12,否則兩直線平行設(shè)21(圖1-30),甲圖的特征是L1與L2的交點(diǎn)在x軸上方;乙圖的特征是L1與L2的交點(diǎn)在x軸下方;丙圖的特征是L1與L2的交點(diǎn)在x軸上,無論哪種情況下都有1=90+2因?yàn)長1、L2的斜率分別是k1、k2,即190,所以20 , 可以推出: 1=90+2 L1L2結(jié)論: 兩條直線都有斜率,如果它們互相垂直,那么它們的斜率互為負(fù)倒數(shù);反之,如果它們的斜率互為負(fù)倒數(shù),那么它們互相垂直,即注意: 結(jié)論成立的條件. 即如果k1k2 = -1, 那么一定有L1L2; 反之則不一定.(借助計(jì)算機(jī), 讓學(xué)生通過度量, 感知k1, k2的關(guān)系, 并使L1(或L2)轉(zhuǎn)動(dòng)起來, 但仍保持L1L2, 觀察k1, k2的關(guān)系, 得到猜想, 再加以驗(yàn)證. 轉(zhuǎn)動(dòng)時(shí), 可使1為銳角,鈍角等).例題例1 已知A(2,3), B(-4,0), P(-3,1), Q(-1,2), 試判斷直線BA與PQ的位置關(guān)系, 并證明你的結(jié)論.分析: 借助計(jì)算機(jī)作圖, 通過觀察猜想:BAPQ, 再通過計(jì)算加以驗(yàn)證.(圖略)解: 直線BA的斜率k1=(3-0)/(2-(-4)=0.5, 直線PQ的斜率k2=(2-1)/(-1-(-3)=0.5,因?yàn)?k1=k2=0.5, 所以 直線BAPQ.例2 已知四邊形ABCD的四個(gè)頂點(diǎn)分別為A(0,0), B(2,-1), C(4,2), D(2,3), 試判斷四邊形ABCD的形狀,并給出證明. (借助計(jì)算機(jī)作圖, 通過觀察猜想: 四邊形ABCD是平行四邊形,再通過計(jì)算加以驗(yàn)證)解同上.已知A(-6,0), B(3,6), P(0,3), Q(-2,6), 試判斷直線AB與PQ的位置關(guān)系.解: 直線AB的斜率k1= (6-0)/(3-(-6)=2/3, 直線PQ的斜率k2= (6-3)(-2-0)=-3/2, 因?yàn)?k1k2 = -1 所以 ABPQ.例4已知A(5,-1), B(1,1), C(2,3
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 大慶師范學(xué)院《嵌入式系統(tǒng)原理與接口技術(shù)含實(shí)驗(yàn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 天津仁愛學(xué)院《教育則里與評(píng)價(jià)》2023-2024學(xué)年第二學(xué)期期末試卷
- 武漢鐵路橋梁職業(yè)學(xué)院《第二外語(日、韓)》2023-2024學(xué)年第二學(xué)期期末試卷
- 湖北文理學(xué)院《獸醫(yī)影像診斷學(xué)》2023-2024學(xué)年第二學(xué)期期末試卷
- 山西運(yùn)城農(nóng)業(yè)職業(yè)技術(shù)學(xué)院《學(xué)生科研指導(dǎo)》2023-2024學(xué)年第二學(xué)期期末試卷
- 福建信息職業(yè)技術(shù)學(xué)院《工程制圖與實(shí)驗(yàn)》2023-2024學(xué)年第二學(xué)期期末試卷
- 蘭州交通大學(xué)《公司金融》2023-2024學(xué)年第二學(xué)期期末試卷
- 連云港師范高等專科學(xué)?!冻醯葦?shù)理天文》2023-2024學(xué)年第二學(xué)期期末試卷
- 黔南民族師范學(xué)院《歌曲作法與小樂隊(duì)編配1》2023-2024學(xué)年第二學(xué)期期末試卷
- 婁底職業(yè)技術(shù)學(xué)院《中學(xué)地理課程標(biāo)準(zhǔn)與地理教學(xué)案例分析》2023-2024學(xué)年第二學(xué)期期末試卷
- 2024年浙江省仙居縣事業(yè)單位公開招聘教師崗筆試題帶答案
- 五年級(jí)數(shù)學(xué)下試卷及答案
- 2025年高考政治答題模板:選必修123主觀題答題語言總結(jié)
- 兒童性早熟課件
- 生活垃圾合同終止協(xié)議
- 區(qū)塊鏈在特種設(shè)備數(shù)據(jù)共享交換模型中的研究
- 山東能源電力集團(tuán)招聘筆試題庫2025
- 遼寧省沈陽市沈北新區(qū)2024-2025學(xué)年初三下學(xué)期質(zhì)量調(diào)研考試(一模)語文試題含解析
- 2025年九年級(jí)中考數(shù)學(xué)三輪沖刺訓(xùn)練一次函數(shù)中面積相關(guān)問題訓(xùn)練
- 醫(yī)療技術(shù)品牌的創(chuàng)新與傳播策略
- 湖北省武漢市2025屆高中畢業(yè)生四月調(diào)研考試生物試題及答案(武漢四調(diào))
評(píng)論
0/150
提交評(píng)論