




已閱讀5頁,還剩6頁未讀, 繼續(xù)免費閱讀
版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
tionandself-healingwillbepresentedwithgreatfeaturesaswellaschallengesrelatedtozeroofintelligentbenefitsTheMachiningprocessmonitoringandcontrolisacoreconceptonwhichtobuildupthenewgenerationofflexibleself-opti-misingintelligentNCmachines.In-processmeasurementandprocessingoftheinformationprovidedbydedicatedsensorsinstalledinthemachine,enablesautonomousdecisionmakingbasedontheon-linediagnosisofthecorrectmachine,work-piece,toolandmachiningprocesscondition,leadingtoanincreasedmachinereliabilitytowardszerodefects,togetherwithhigherproductivityandefficiency.Indeed,themainsensingandprocessingtechniquesintheliterature35focuson0094-114X/$-seefrontmatterC2112008ElsevierLtd.Allrightsreserved.*Correspondingauthor.Tel.:+441612003804.E-mailaddress:s.mekidmanchester.ac.uk(S.Mekid).MechanismandMachineTheory44(2009)466476ContentslistsavailableatScienceDirectMechanismandMachineTheorydoi:10.1016/j.mechmachtheory.2008.03.006underverytightconditions1,2.Themachine-toolindustryisrespondingtoanumberofrequirements,e.g.e_commerce,just-in-time-productionandmostimportantlyzerodefectcomponent.Thisisfacilitatedbyintegratingnewmaterials,designconcepts,andcontrolmech-anismswhichenablemachinetoolsoperatingathigh-speedwithaccuraciesbelowthan5lm.Howevertheintegrationofhumanexperienceinmanufacturingtowardsflexibleandself-optimisingmachinesiswidelymissing.Thiscanbeachievedbyenhancingexistingcomputingtechnologiesandintegratingthemwithhumanknowledgeofdesign,automation,machin-ingandservicingintoe-manufacturing.Thenextgenerationwillbedescribedasnewintelligentreconfigurablemanufacturingsystemswhichrealisesadynamicfusionofhumanandmachineintelligence,manufacturingknowledgeandstate-of-the-artdesigntechniques.Thismayleadtolow-costself-optimisingintegratedmachines.Itwillencompassfault-tolerantadvancedpredictivemaintenancefacilitiesforproducinghigh-qualityerror-freeworkpiecesusingconventionalandadvancedmanufacturingprocesses.1.IntroductionComplexcomponentmachinedwithlengerequiredforthenewgenerationuctsandprocessesofferssubstantialhigherqualityandbetterreliability.variousaspectsofthenextgenerationofintelligentmachinetoolcentres.C2112008ElsevierLtd.Allrightsreserved.defectsisatopperformanceinmassproductionanditbecomesanewchal-machine-tools.Increasingtheprecisionandaccuracyofmachines,prod-toawiderangeofapplicationsfromultra-precisiontomassproductionwithrecentdevelopmentofultraprecisionmachinesisreachingnanometreprecisionBeyondintelligentmanufacturing:AnewgenerationofflexibleintelligentNCmachinesS.Mekida,*,P.Pruschekb,J.HernandezcaTheUniversityofManchester,SchoolofMechanical,AerospaceandCivilEngineering,ManchesterM601QD,UKbInstituteforControlEngineeringofMachineToolsandManufacturingUnits,UniversityofStuttgart,GermanycIDEKOTechnologicalCentre,ArriagaKalea,220870ElgoibarGipuzkoa,SpainarticleinfoArticlehistory:Received30November2006Receivedinrevisedform3March2008Accepted4March2008Availableonline29April2008abstractNewchallengesforintelligentreconfigurablemanufacturingsystemsareontheagendaforthenextgenerationofmachinetoolcentres.Zerodefectworkpiecesandjust-in-timepro-ductionaresomeoftheobjectivestobereachedforbetterqualityandhighperformanceproduction.Sustainabilityrequiresaholisticapproachtocovernotonlyflexibleintelligentmanufacturebutalsoproductandservicesactivities.Newroutesphilosophyofpossiblemachinearchitecturewithcharacteristicssuchashybridprocesseswithin-processinspec-journalhomepage:/locate/mechmtOntheotherhand,specialattentionhastobepaidtothelatterprocesscontrolstrategies(ACO).CharacteristicexamplesS.Mekidetal./MechanismandMachineTheory44(2009)466476467canbefoundat1519.Themainfunctionalityprovidedbysuchcontrolsystemsisthepost-processself-optimisationofprocessparameterset-up(i.e.feeds,depthsofcut,etc.),withtheobjectiveofset-uptimeminimisation,processknowledgemanagementandprocessoptimisation,towardsflexiblejust-in-timeproduction.Withthein-processmonitoringofprocessperformanceandthepost-processmeasurementoftheresultingpartquality,aknowledgebasedprocessmodelisusedtodeterminethenewoptimisedsetofcuttingparameters,enablingautonomousself-optimisation.Inthesameway,asapre-vioussteptooptimisation,ACOsystemsarealsoappliedtoselectthefirstprocessset-upfornewpartqualityandprocessrequirements.Therefore,ifaflexibleintelligentNCmachinetoolistobedeveloped,processknowledgebasedmodelsareacomponentofprimaryimportancetobeintegratedunderthemachinetoolcontrolarchitecture.Inadditiontotheadaptationofcontrolparametersaccordingtoprocessconditions,controlparametershavealsotobeoptimalduringhandling(includingchangingoperationsofworkpiecesandtools)andpositioningoperationsastheseoper-ationsaccounttypicallyformorethan50%oftheoveralloperatingtime.Earliermethodsforparameteroptimisationcon-centratedonthereductionofpositioningandsettlingtimesofthefeedaxisbytuningonlyafewbasiccontrolparameters(e.g.gainofthepositioncontrolloopandgainandresettimeofthevelocitycontrolloop).Withincreasedcom-putationalpower,optimisationmethodsasdescribedin20cannowbereinvestigatedfortheusewithawiderparametersetincludingtheparametersforaccelerationandjerklimitswhicharedirectlyinfluencingthevibrationsofanaxis.Ifthecharacteristicsofacontrolledaxisareknownbymeansofthevibrationbehaviour,anadequategenerationoftheprogrammedtrajectoriescanyieldafurtheroptimisation.Methodsforinputshaping49canbeusedtodesigntrajectoriesthatdonotexciteresonantfrequenciesofagivensystem.Hence,settlingtimesandthuspositioningtimescanbefurtherreduced.Concerningparameteroptimisationthroughself-learningparticularly,theinterestoftheso-calledmachinelearningap-proaches21willbeintroducedasthemainresearchtrendinprocessmonitoringandcontrolstrategiestowardstheintel-ligentmanufacturingsystem.2.ExpectedcharacteristicsofthenextgenerationTheexpectedcharacteristicsofthenextgenerationofmachinecentresaredescribedasfollows:(a)Integration:developmentofanintegratedmachinetoolbeingcapableofperformingbothconventionalandnon-con-ventionalprocessesinoneplatform.(b)Bi-directionaldataflow:definitionofabi-directionalprocesschainforunifieddatacommunicationexchangebetweenCAD,CAM,CNCandDrivesystems.(c)Processcontrolloop:developmentandCNCinte-grationofrobustandreliablereal-timestrategiesforthein-processtool,part,andprocessconditionmonitoringandcontrol.(d)Predictivemaintenance:specificationofaload-andsituation-dependentconditionmonitoringformachinecomponentsasabasisforself-reliantmachineoperation.Thiswillbefollowedbytheformulationofaself-organisingpredictivemain-tenanceschedulethatisbasedonself-andremotediagnosticsandcoversbothshortandlongtermaspects.(e)Autonomousoptimisation:developmentofaself-configuringself-optimisingcontrolsystemforautonomousmanufacturing,basedonthein-processmonitoring,characterisationandmanagementofprocessknowledge.Tofacilitatesuchcharacteristics,thefollow-ingtopicswillbenecessarytobeimplemented:(a)Todevelopanintegratedintelligentmachinecentrededicatedtoe-manufacturing.(b)Toinvestigateanddevelopfast,stableandstiffreconfigurablemachineswithhybridmachiningprocessestoprepareanewplatformforfuturemachine-tools.(c)Toinvestigateimplementationoftotalerrorcompensationandinsituinspectionfacility.monitoringstrategiesforpartconditionmonitoring(surfaceroughness,surfaceintegrityanddimensionalaccuracy),toolconditionmonitoring(theso-calledTCMforwearandbreakagedetection),processconditionmonitoring(chatteronsetandcollisiondetection)andmachinecomponentconditionmonitoringforpredictivemaintenancepurposes(rotarycompo-nentsandpartssubjecttofrictionsuchasguideways).Sincedirectandin-processmeasurementisnotgenerallypossibleduetotheaggressiveenvironmentinthecuttingzonesurroundings,themainresearcheffortoverthelastdecadesforpartandtoolmonitoringhasbeenfocusedonindirectmeasurementtechniques(processcondition-based),inwhichcuttingprocesscharacteristics(i.e.cuttingforcesandpower,vibrations,cuttingtemperature,acousticemission,etc.)aremeasuredinordertoindirectlyinferthepartandtoolcondition6,7.SensitivityofferedbyCNCinternalservosignalsfromopenarchitecturecontrollersisunderstudyaswell8,9,sincetheyenablethedevelopmentofmonitoringandcontrolstrategieswithouttheneedofinstallingadditionalsensorsinthemachine.Inthesameway,basedonthedataprovidedbyin-processmonitoring,autonomousself-optimisationcanbeperformedwiththeintegrationofprocesscontrolstrategiesintothemachinetoolcontrolarchitecture.Machiningprocesscontrolstrat-egiesareclassifiedintotwomaingroups5,namelyadaptivecontrolconstraint(ACC)andadaptivecontroloptimisation(ACO).IntheformerACCcontrolstrategies,aprocessvariable(i.e.cuttingforce)iskeptconstantandundercontrolthroughthereal-timein-processregulationofacuttingprocessparameter(i.e.cuttingfeed),withtheaimofincreasingprocessproduc-tivityandrepeatability.MainresearcheffortsonACCstrategiesfocusoncuttingforcecontrol1012andchattervibrationsuppression13,14.drawbacktodealwith.468S.Mekidetal./MechanismandMachineTheory44(2009)466476Indeed,flexiblemonitoringsystemsarerequiredundertheactualmarketrequirementsandthus,reliableprocessdiag-nosisisnecessaryunderdifferentcuttingconditions.Nowadays,acommonproblematicsharedbyconventionalprocessmonitoringapproachesforpartandtoolconditionmonitoringisthelackofreliabilityunderchangingcuttingconditionshencelimitingtheflexibilityofsuchautomationsystems3.Asacharacteristicexampleofthisproblematicforprocesscon-ditionbasedtoolconditionmonitoring(TCM),theprocessconditionisnotonlyinfluencedbychangesintoolcondition,butitisalsodirectlyaffectedbycuttingconditions.Furthermore,underdifferentcuttingconditions,differentwearmechanismscanbeactivatedonthetool,eachonehavingitsparticularimpactonprocessandpartcondition.Therefore,whensetting-upprocessmonitoringsystemsfornewcuttingconditions,previoustrialsforprocesssignaldatabaseretrievalarerequired4.Thesearecombinedtogetherwithskilledoperatorswiththenecessaryprocessknowledgeinordertointerpretchangesinprocessbehaviour(i.e.forces,vibrations,etc.)andset-upsuiteddetectionlimits.Additionally,flexibleprocessmonitoringequipmentsoftenrequiresadditionalsensorsthatcanfailandresultinunforeseendowntime.Asaresult,whenhighflex-ibilityisrequired,monitoringsystemsareusuallyswitched-offinindustry,anddirectpost-processmeasurementisper-formed,withthecorrespondingreliabilitylackinthemachinedpartquality.Dealingwithsuchaproblematic,model-basedprocessmonitoringandsensorfusionapproachesarepointedoutasthealternativeinordertogetreliableprocessconditiondiagnosis,withaclearresearcheffortoverlastyearsformachiningpro-cessessuchasturning2224,grinding4,25,26andmilling27.Ontheotherhand,theintegrationofhumanexperienceinmanufacturingiswidelymissingconcerningmachiningpro-cessoptimisation.Set-uptimereductioniscriticalwhenflexiblejust-in-timeproductionisrequired.Nowadays,set-up-timemainlydependsonprocessknowledgeconcentratedinskilledoperators,andthereisalackofsystematicmanagement,re-trieval,sharingandoptimisationofthatkeyknowledge.Furthermore,characterisationofprocessknowledgeanddevelop-mentofmodelsforautonomousprocessoptimisationarerequiredifset-uptimesaretobedrasticallyreduced.(d)Todevelopandproducenewmethodologiesandconceptsofautonomousmanufacturing,self-supervisionandself-diagnostic/tuning/healing.(e)Todevelopandintegratereal-timeprocesscontrollersintoopenCNCanddrivesystemarchitecture,takingthemachinefromanaxis-controlledsystemtoamachiningprocess-controlledself-reliantsystem,basedontheon-lineinformationprovidedbyrobustandreliablesensingtechniquesfortool,part,andmachiningprocessconditionmonitoring.(f)TodevelopandincorporateanextendibleandknowledgebasedCAMsystemcapableofrecognisingcomplexfeatures,performingself-learningbasedonin-processmonitoreddataprovidedbymachinecontrolloops,andautonomouslydeterminingtheoptimumtools/setsforgivenrequirementsofpartquality,machineproductivityandprocesseffi-ciency.Followingthee-manufacturingapproach,inasecondstep,CAMsystemscapableofsharingself-optimisedpro-cessknowledgebetweennetworkedmachinesaretobedeveloped.Aninterdisciplinaryapproachofmachine-toolbuildersinordertoachievetheseobjectivesbecomesnecessaryandin-cludescontrolmanufacturers,researchinstitutionsandpotentialend-users.Suchadevelopmentwillrealiseanumberofbreakthroughsinthefuture,e.g.(a)Delay-freecumzero-downtimeproduction:theproposede-manufacturingapproachwillseetheuseofelectronicservicesbasedonavailabledatafrommachinedprocesses,sensorsignals,andhumanexperiencethatisintegratedinazerodelay-timesystemtoenablemachineswithnearzero-downtimeandproductionthatmeetsuserrequirementswithzerodelaytime.(b)Self-reliantproduction:machineswillbeenabledtooperatewidelyautonomously.(c)Optimalproduction:self-configurationandself-optimisationwilleliminateproductionerrorsdowntothelimitationsofthein-processmeasurementdevices.3.ConceptsofintelligentandflexiblemachinesInFig.2,theauthorsproposeanewintegratedconceptforthenextgenerationofmachinetoolcentres.Basedontheknowledgeacquiredandthefeaturesextracted,theperformanceofcontrolsystemswillbeextendedtowardsself-controlledmanufacturingwiththeobjectivesofcost-effective,highquality,fault-tolerantandmoreflexiblesystemswithbetterpro-cesscapability.NewintelligentcontrolsystemshavetobedevelopedandintegratedwithopenarchitecturecontrollerssuchasOpenCNCC210orOSACA-basedCNCs.Inordertoallowanautomatederror-freeproductionwithnearzerodowntime,openinterfaces,learningcapabilities,self-tuningandself-adjustingmechanismsaswellassophisticatedmodel-basedpredictioninstrumentshavetobeimplementedattheselayers.Qualityinspectioncouldoperateinsituwithenvironmentalconditionstakenintoaccount.Forthefirsttime,theconceptofself-healingwithe-maintenancecouldbe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 南京大學金陵學院《復變函數(shù)B》2023-2024學年第一學期期末試卷
- 玉溪職業(yè)技術學院《工程有限元與數(shù)值計算》2023-2024學年第二學期期末試卷
- 石河子大學《公共組織管理》2023-2024學年第二學期期末試卷
- 山東財經(jīng)大學燕山學院《寄生蟲學中醫(yī)文獻檢索》2023-2024學年第一學期期末試卷
- 蘭州職業(yè)技術學院《游泳》2023-2024學年第二學期期末試卷
- 內蒙古呼市二中2025年高三下-期中考試英語試題試卷含解析
- 西北師范大學《果蔬加工工藝學實驗》2023-2024學年第二學期期末試卷
- 湖南省長沙市明德華興中學2024-2025學年初三(下)調研生物試題試卷含解析
- 綿陽城市學院《施工組織與管理》2023-2024學年第二學期期末試卷
- 四川水利職業(yè)技術學院《日語綜合能力訓練(1)》2023-2024學年第一學期期末試卷
- 電子產(chǎn)品設計生產(chǎn)工藝流程
- 國家自然科學獎評價指標
- 常用食物含銅量表
- (完整版)詳細化學物質及其CAS注冊號清單
- 科研與臨床ppt課件
- 科技企業(yè)孵化器運營方案
- 火力發(fā)電廠電氣主接線課程設計
- 吸入裝置正確使用方法調查表
- AS9100D2016產(chǎn)品設計和開發(fā)控制程序
- 三角廣告牌拆卸方案
- 大皂角(中藥飲片炮制規(guī)范文檔 性狀 鑒別 用法用量功能與主治 )
評論
0/150
提交評論