已閱讀5頁,還剩6頁未讀, 繼續(xù)免費(fèi)閱讀
版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
tionandself-healingwillbepresentedwithgreatfeaturesaswellaschallengesrelatedtozeroofintelligentbenefitsTheMachiningprocessmonitoringandcontrolisacoreconceptonwhichtobuildupthenewgenerationofflexibleself-opti-misingintelligentNCmachines.In-processmeasurementandprocessingoftheinformationprovidedbydedicatedsensorsinstalledinthemachine,enablesautonomousdecisionmakingbasedontheon-linediagnosisofthecorrectmachine,work-piece,toolandmachiningprocesscondition,leadingtoanincreasedmachinereliabilitytowardszerodefects,togetherwithhigherproductivityandefficiency.Indeed,themainsensingandprocessingtechniquesintheliterature35focuson0094-114X/$-seefrontmatterC2112008ElsevierLtd.Allrightsreserved.*Correspondingauthor.Tel.:+441612003804.E-mailaddress:s.mekidmanchester.ac.uk(S.Mekid).MechanismandMachineTheory44(2009)466476ContentslistsavailableatScienceDirectMechanismandMachineTheorydoi:10.1016/j.mechmachtheory.2008.03.006underverytightconditions1,2.Themachine-toolindustryisrespondingtoanumberofrequirements,e.g.e_commerce,just-in-time-productionandmostimportantlyzerodefectcomponent.Thisisfacilitatedbyintegratingnewmaterials,designconcepts,andcontrolmech-anismswhichenablemachinetoolsoperatingathigh-speedwithaccuraciesbelowthan5lm.Howevertheintegrationofhumanexperienceinmanufacturingtowardsflexibleandself-optimisingmachinesiswidelymissing.Thiscanbeachievedbyenhancingexistingcomputingtechnologiesandintegratingthemwithhumanknowledgeofdesign,automation,machin-ingandservicingintoe-manufacturing.Thenextgenerationwillbedescribedasnewintelligentreconfigurablemanufacturingsystemswhichrealisesadynamicfusionofhumanandmachineintelligence,manufacturingknowledgeandstate-of-the-artdesigntechniques.Thismayleadtolow-costself-optimisingintegratedmachines.Itwillencompassfault-tolerantadvancedpredictivemaintenancefacilitiesforproducinghigh-qualityerror-freeworkpiecesusingconventionalandadvancedmanufacturingprocesses.1.IntroductionComplexcomponentmachinedwithlengerequiredforthenewgenerationuctsandprocessesofferssubstantialhigherqualityandbetterreliability.variousaspectsofthenextgenerationofintelligentmachinetoolcentres.C2112008ElsevierLtd.Allrightsreserved.defectsisatopperformanceinmassproductionanditbecomesanewchal-machine-tools.Increasingtheprecisionandaccuracyofmachines,prod-toawiderangeofapplicationsfromultra-precisiontomassproductionwithrecentdevelopmentofultraprecisionmachinesisreachingnanometreprecisionBeyondintelligentmanufacturing:AnewgenerationofflexibleintelligentNCmachinesS.Mekida,*,P.Pruschekb,J.HernandezcaTheUniversityofManchester,SchoolofMechanical,AerospaceandCivilEngineering,ManchesterM601QD,UKbInstituteforControlEngineeringofMachineToolsandManufacturingUnits,UniversityofStuttgart,GermanycIDEKOTechnologicalCentre,ArriagaKalea,220870ElgoibarGipuzkoa,SpainarticleinfoArticlehistory:Received30November2006Receivedinrevisedform3March2008Accepted4March2008Availableonline29April2008abstractNewchallengesforintelligentreconfigurablemanufacturingsystemsareontheagendaforthenextgenerationofmachinetoolcentres.Zerodefectworkpiecesandjust-in-timepro-ductionaresomeoftheobjectivestobereachedforbetterqualityandhighperformanceproduction.Sustainabilityrequiresaholisticapproachtocovernotonlyflexibleintelligentmanufacturebutalsoproductandservicesactivities.Newroutesphilosophyofpossiblemachinearchitecturewithcharacteristicssuchashybridprocesseswithin-processinspec-journalhomepage:/locate/mechmtOntheotherhand,specialattentionhastobepaidtothelatterprocesscontrolstrategies(ACO).CharacteristicexamplesS.Mekidetal./MechanismandMachineTheory44(2009)466476467canbefoundat1519.Themainfunctionalityprovidedbysuchcontrolsystemsisthepost-processself-optimisationofprocessparameterset-up(i.e.feeds,depthsofcut,etc.),withtheobjectiveofset-uptimeminimisation,processknowledgemanagementandprocessoptimisation,towardsflexiblejust-in-timeproduction.Withthein-processmonitoringofprocessperformanceandthepost-processmeasurementoftheresultingpartquality,aknowledgebasedprocessmodelisusedtodeterminethenewoptimisedsetofcuttingparameters,enablingautonomousself-optimisation.Inthesameway,asapre-vioussteptooptimisation,ACOsystemsarealsoappliedtoselectthefirstprocessset-upfornewpartqualityandprocessrequirements.Therefore,ifaflexibleintelligentNCmachinetoolistobedeveloped,processknowledgebasedmodelsareacomponentofprimaryimportancetobeintegratedunderthemachinetoolcontrolarchitecture.Inadditiontotheadaptationofcontrolparametersaccordingtoprocessconditions,controlparametershavealsotobeoptimalduringhandling(includingchangingoperationsofworkpiecesandtools)andpositioningoperationsastheseoper-ationsaccounttypicallyformorethan50%oftheoveralloperatingtime.Earliermethodsforparameteroptimisationcon-centratedonthereductionofpositioningandsettlingtimesofthefeedaxisbytuningonlyafewbasiccontrolparameters(e.g.gainofthepositioncontrolloopandgainandresettimeofthevelocitycontrolloop).Withincreasedcom-putationalpower,optimisationmethodsasdescribedin20cannowbereinvestigatedfortheusewithawiderparametersetincludingtheparametersforaccelerationandjerklimitswhicharedirectlyinfluencingthevibrationsofanaxis.Ifthecharacteristicsofacontrolledaxisareknownbymeansofthevibrationbehaviour,anadequategenerationoftheprogrammedtrajectoriescanyieldafurtheroptimisation.Methodsforinputshaping49canbeusedtodesigntrajectoriesthatdonotexciteresonantfrequenciesofagivensystem.Hence,settlingtimesandthuspositioningtimescanbefurtherreduced.Concerningparameteroptimisationthroughself-learningparticularly,theinterestoftheso-calledmachinelearningap-proaches21willbeintroducedasthemainresearchtrendinprocessmonitoringandcontrolstrategiestowardstheintel-ligentmanufacturingsystem.2.ExpectedcharacteristicsofthenextgenerationTheexpectedcharacteristicsofthenextgenerationofmachinecentresaredescribedasfollows:(a)Integration:developmentofanintegratedmachinetoolbeingcapableofperformingbothconventionalandnon-con-ventionalprocessesinoneplatform.(b)Bi-directionaldataflow:definitionofabi-directionalprocesschainforunifieddatacommunicationexchangebetweenCAD,CAM,CNCandDrivesystems.(c)Processcontrolloop:developmentandCNCinte-grationofrobustandreliablereal-timestrategiesforthein-processtool,part,andprocessconditionmonitoringandcontrol.(d)Predictivemaintenance:specificationofaload-andsituation-dependentconditionmonitoringformachinecomponentsasabasisforself-reliantmachineoperation.Thiswillbefollowedbytheformulationofaself-organisingpredictivemain-tenanceschedulethatisbasedonself-andremotediagnosticsandcoversbothshortandlongtermaspects.(e)Autonomousoptimisation:developmentofaself-configuringself-optimisingcontrolsystemforautonomousmanufacturing,basedonthein-processmonitoring,characterisationandmanagementofprocessknowledge.Tofacilitatesuchcharacteristics,thefollow-ingtopicswillbenecessarytobeimplemented:(a)Todevelopanintegratedintelligentmachinecentrededicatedtoe-manufacturing.(b)Toinvestigateanddevelopfast,stableandstiffreconfigurablemachineswithhybridmachiningprocessestoprepareanewplatformforfuturemachine-tools.(c)Toinvestigateimplementationoftotalerrorcompensationandinsituinspectionfacility.monitoringstrategiesforpartconditionmonitoring(surfaceroughness,surfaceintegrityanddimensionalaccuracy),toolconditionmonitoring(theso-calledTCMforwearandbreakagedetection),processconditionmonitoring(chatteronsetandcollisiondetection)andmachinecomponentconditionmonitoringforpredictivemaintenancepurposes(rotarycompo-nentsandpartssubjecttofrictionsuchasguideways).Sincedirectandin-processmeasurementisnotgenerallypossibleduetotheaggressiveenvironmentinthecuttingzonesurroundings,themainresearcheffortoverthelastdecadesforpartandtoolmonitoringhasbeenfocusedonindirectmeasurementtechniques(processcondition-based),inwhichcuttingprocesscharacteristics(i.e.cuttingforcesandpower,vibrations,cuttingtemperature,acousticemission,etc.)aremeasuredinordertoindirectlyinferthepartandtoolcondition6,7.SensitivityofferedbyCNCinternalservosignalsfromopenarchitecturecontrollersisunderstudyaswell8,9,sincetheyenablethedevelopmentofmonitoringandcontrolstrategieswithouttheneedofinstallingadditionalsensorsinthemachine.Inthesameway,basedonthedataprovidedbyin-processmonitoring,autonomousself-optimisationcanbeperformedwiththeintegrationofprocesscontrolstrategiesintothemachinetoolcontrolarchitecture.Machiningprocesscontrolstrat-egiesareclassifiedintotwomaingroups5,namelyadaptivecontrolconstraint(ACC)andadaptivecontroloptimisation(ACO).IntheformerACCcontrolstrategies,aprocessvariable(i.e.cuttingforce)iskeptconstantandundercontrolthroughthereal-timein-processregulationofacuttingprocessparameter(i.e.cuttingfeed),withtheaimofincreasingprocessproduc-tivityandrepeatability.MainresearcheffortsonACCstrategiesfocusoncuttingforcecontrol1012andchattervibrationsuppression13,14.drawbacktodealwith.468S.Mekidetal./MechanismandMachineTheory44(2009)466476Indeed,flexiblemonitoringsystemsarerequiredundertheactualmarketrequirementsandthus,reliableprocessdiag-nosisisnecessaryunderdifferentcuttingconditions.Nowadays,acommonproblematicsharedbyconventionalprocessmonitoringapproachesforpartandtoolconditionmonitoringisthelackofreliabilityunderchangingcuttingconditionshencelimitingtheflexibilityofsuchautomationsystems3.Asacharacteristicexampleofthisproblematicforprocesscon-ditionbasedtoolconditionmonitoring(TCM),theprocessconditionisnotonlyinfluencedbychangesintoolcondition,butitisalsodirectlyaffectedbycuttingconditions.Furthermore,underdifferentcuttingconditions,differentwearmechanismscanbeactivatedonthetool,eachonehavingitsparticularimpactonprocessandpartcondition.Therefore,whensetting-upprocessmonitoringsystemsfornewcuttingconditions,previoustrialsforprocesssignaldatabaseretrievalarerequired4.Thesearecombinedtogetherwithskilledoperatorswiththenecessaryprocessknowledgeinordertointerpretchangesinprocessbehaviour(i.e.forces,vibrations,etc.)andset-upsuiteddetectionlimits.Additionally,flexibleprocessmonitoringequipmentsoftenrequiresadditionalsensorsthatcanfailandresultinunforeseendowntime.Asaresult,whenhighflex-ibilityisrequired,monitoringsystemsareusuallyswitched-offinindustry,anddirectpost-processmeasurementisper-formed,withthecorrespondingreliabilitylackinthemachinedpartquality.Dealingwithsuchaproblematic,model-basedprocessmonitoringandsensorfusionapproachesarepointedoutasthealternativeinordertogetreliableprocessconditiondiagnosis,withaclearresearcheffortoverlastyearsformachiningpro-cessessuchasturning2224,grinding4,25,26andmilling27.Ontheotherhand,theintegrationofhumanexperienceinmanufacturingiswidelymissingconcerningmachiningpro-cessoptimisation.Set-uptimereductioniscriticalwhenflexiblejust-in-timeproductionisrequired.Nowadays,set-up-timemainlydependsonprocessknowledgeconcentratedinskilledoperators,andthereisalackofsystematicmanagement,re-trieval,sharingandoptimisationofthatkeyknowledge.Furthermore,characterisationofprocessknowledgeanddevelop-mentofmodelsforautonomousprocessoptimisationarerequiredifset-uptimesaretobedrasticallyreduced.(d)Todevelopandproducenewmethodologiesandconceptsofautonomousmanufacturing,self-supervisionandself-diagnostic/tuning/healing.(e)Todevelopandintegratereal-timeprocesscontrollersintoopenCNCanddrivesystemarchitecture,takingthemachinefromanaxis-controlledsystemtoamachiningprocess-controlledself-reliantsystem,basedontheon-lineinformationprovidedbyrobustandreliablesensingtechniquesfortool,part,andmachiningprocessconditionmonitoring.(f)TodevelopandincorporateanextendibleandknowledgebasedCAMsystemcapableofrecognisingcomplexfeatures,performingself-learningbasedonin-processmonitoreddataprovidedbymachinecontrolloops,andautonomouslydeterminingtheoptimumtools/setsforgivenrequirementsofpartquality,machineproductivityandprocesseffi-ciency.Followingthee-manufacturingapproach,inasecondstep,CAMsystemscapableofsharingself-optimisedpro-cessknowledgebetweennetworkedmachinesaretobedeveloped.Aninterdisciplinaryapproachofmachine-toolbuildersinordertoachievetheseobjectivesbecomesnecessaryandin-cludescontrolmanufacturers,researchinstitutionsandpotentialend-users.Suchadevelopmentwillrealiseanumberofbreakthroughsinthefuture,e.g.(a)Delay-freecumzero-downtimeproduction:theproposede-manufacturingapproachwillseetheuseofelectronicservicesbasedonavailabledatafrommachinedprocesses,sensorsignals,andhumanexperiencethatisintegratedinazerodelay-timesystemtoenablemachineswithnearzero-downtimeandproductionthatmeetsuserrequirementswithzerodelaytime.(b)Self-reliantproduction:machineswillbeenabledtooperatewidelyautonomously.(c)Optimalproduction:self-configurationandself-optimisationwilleliminateproductionerrorsdowntothelimitationsofthein-processmeasurementdevices.3.ConceptsofintelligentandflexiblemachinesInFig.2,theauthorsproposeanewintegratedconceptforthenextgenerationofmachinetoolcentres.Basedontheknowledgeacquiredandthefeaturesextracted,theperformanceofcontrolsystemswillbeextendedtowardsself-controlledmanufacturingwiththeobjectivesofcost-effective,highquality,fault-tolerantandmoreflexiblesystemswithbetterpro-cesscapability.NewintelligentcontrolsystemshavetobedevelopedandintegratedwithopenarchitecturecontrollerssuchasOpenCNCC210orOSACA-basedCNCs.Inordertoallowanautomatederror-freeproductionwithnearzerodowntime,openinterfaces,learningcapabilities,self-tuningandself-adjustingmechanismsaswellassophisticatedmodel-basedpredictioninstrumentshavetobeimplementedattheselayers.Qualityinspectioncouldoperateinsituwithenvironmentalconditionstakenintoaccount.Forthefirsttime,theconceptofself-healingwithe-maintenancecouldbe
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 二零二五年度2025版木材行業(yè)標(biāo)準(zhǔn)制定合作合同2篇
- 福建省泉州市南安市2024-2025學(xué)年八年級(jí)上學(xué)期期末英語試題(無答案)
- 創(chuàng)新創(chuàng)業(yè)-職業(yè)核心能力課件
- 絲印精加工在微型電子設(shè)備制造領(lǐng)域的應(yīng)用考核試卷
- 二零二五年度墓地陵園土地租賃與使用權(quán)轉(zhuǎn)讓合同4篇
- 母嬰行業(yè)2025年度母嬰用品環(huán)保認(rèn)證服務(wù)合同2篇
- 二零二五版鋼材貨物流動(dòng)銀行托管運(yùn)輸合同3篇
- 二零二五年度木制品生產(chǎn)與銷售承包合同3篇
- 2025年公司內(nèi)部競(jìng)業(yè)保密協(xié)議
- 2025年太陽能光伏電站智能監(jiān)控工程施工合同
- 2024年高純氮化鋁粉體項(xiàng)目可行性分析報(bào)告
- 安檢人員培訓(xùn)
- 山東省濰坊市2024-2025學(xué)年高三上學(xué)期1月期末 英語試題
- 危險(xiǎn)性較大分部分項(xiàng)工程及施工現(xiàn)場(chǎng)易發(fā)生重大事故的部位、環(huán)節(jié)的預(yù)防監(jiān)控措施
- 《榜樣9》觀后感心得體會(huì)四
- 2023事業(yè)單位筆試《公共基礎(chǔ)知識(shí)》備考題庫(含答案)
- 化學(xué)-廣東省廣州市2024-2025學(xué)年高一上學(xué)期期末檢測(cè)卷(一)試題和答案
- 2025四川中煙招聘高頻重點(diǎn)提升(共500題)附帶答案詳解
- EHS工程師招聘筆試題與參考答案(某大型央企)2024年
- 營(yíng)銷策劃 -麗亭酒店品牌年度傳播規(guī)劃方案
- 2025年中國(guó)蛋糕行業(yè)市場(chǎng)規(guī)模及發(fā)展前景研究報(bào)告(智研咨詢發(fā)布)
評(píng)論
0/150
提交評(píng)論