人教初中數學九上21.2.4一元二次方程的根與系數關系教案_第1頁
人教初中數學九上21.2.4一元二次方程的根與系數關系教案_第2頁
人教初中數學九上21.2.4一元二次方程的根與系數關系教案_第3頁
全文預覽已結束

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、21.2.4 一元二次方程的根與系數關系教學時間課題21.2.4一元二次方程的根與系數關系課型新授教學媒體多媒體教學目標知識技能1.熟練掌握一元二次方程的根與系數關系.2.靈活運用一元二次方程的根與系數關系解決實際問題.3.提高學生綜合運用基礎知識分析解決較復雜問題的能力.過程方法學生經歷探索,嘗試發(fā)現韋達定理,感受不完全歸納驗證以及演繹證明.情感態(tài)度培養(yǎng)學生觀察,分析和綜合,判斷的能力,激發(fā)學生發(fā)現規(guī)律的積極性,激勵學生勇于探索的精神.教學重點一元二次方程的根與系數關系教學難點對根與系數關系的理解和推導教學過程設計教學程序及教學內容師生行為設計意圖一、復習引入導語:一元二次方程的根與系數有著

2、密切的關系,早在16世紀法國的杰出數學家韋達發(fā)現了這一關系,你能發(fā)現嗎?二、探究新知1.課本思考分析:將(x- x1)(x-x2)=0化為一般形式x2-( x1 +x2)x+ x1 x2=0與x2+px+ q=0對比,易知p=-( x1 +x2), q= x1 x2. 即二次項系數是1的一元二次方程如果有實數根,則一次項系數等于兩根和的相反數,常數項等于兩根之積.2.跟蹤練習求下列方程的兩根x1 、x2. 的和與積.x2+3x+2=0; x2+2x-3=0; x2-6x+5=0; x2-6x-15=03. 方程2x2-3x+1=0的兩根的和、積與系數之間有類似的關系嗎?分析:這個方程的二次項系

3、數等于2,與上面情形有所不同,求出方程兩根,再通過計算兩根的和、積,檢驗上面的結論是否成立,若不成立,新的結論是什么?4.一般的一元二次方程ax2+bx+c=0(a0)中的a不一定是1,它的兩根的和、積與系數之間有第3題中的關系嗎?分析:利用求根公式,求出方程兩根,再通過計算兩根的和、積,得到方程的兩個根x1 、x2和系數a,b,c的關系,即韋達定理,也就是任何一個一元二次方程的根與系數的關系為:兩根的和等于一次項系數與二次項系數的比的相反數,兩根之積等于常數項與二次項系數的比. 求根公式是在一般形式下推導得到,根與系數的關系由求根公式得到,因此,任何一個一元二次方程化為一般形式后根與系數之間

4、都有這一關系.5.跟蹤練習求下列方程的兩根x1 、x2. 的和與積.3x2+7x+2=0;3x2+7x-2=0; 3x2-7x+2=0;3x2-7x-2=0;5x-1=4x2;5x2-1=4x2+x6.拓展練習已知一元二次方程2x2+bx+c=0的兩個根是-1,3,則b= ,c= .已知關于x的方程x2+kx-2=0的一個根是1,則另一個根是 ,k的值是 .若關于x的一元二次方程x2+px+q=0的兩個根互為相反數,則p= ; 若兩個根互為倒數,則q= .分析:方程中含有一個字母系數時利用方程一根的值可求得另一根和這個字母系數;方程中含有兩個字母系數時利用方程的兩根的值可求得這兩個字母系數.二

5、次項系數是1時,若方程的兩根互為相反數或互為倒數,利用根與系數的關系可求得方程的一次項系數和常數項.兩個根均為負數的一元二次方程是( ) A.4x2+21x+5=0 B.6x2-13x-5=0 C.7x2-12x+5=0 D.2x2+15x-8=0.兩根異號,且正根的絕對值較大的方程是( )A.4x2-3=0 B.-3x2+5x-4=0 C.0.5x2-4x-3=0 D.2x2+x-=0.若關于x的一元二次方程2x2-3x+m=0,當m 時方程有兩個正根;當m 時方程有兩個負根;當m 時方程有一個正根一個負根,且正根的絕對值較大.分析:根據方程的根的正負情況,結合根與系數關系,確定方程各項系數

6、的符號,中還需考慮m的值還得受根的判別式的限制.三、課堂訓練1.完成課本練習2.補充練習:x1 ,x2是方程3x2-2x-4=0的兩根,利用根與系數的關系求下列各式的值:; ; ;四、小結歸納本節(jié)課應掌握:1. 韋達定理二次項系數不是1的方程根與系數的關系2. 運用韋達定理時,注意隱含條件:二次項系數不為0,0;3.韋達定理的應用常見題型:不解方程,判斷兩個數是否是某一個一元二次方程的兩根;已知方程和方程的一根,求另一個根和字母系數的值;由給出的兩根滿足的條件,確定字母系數的值;判斷兩個根的符號;不解方程求含有方程的兩根的式子的值.五、作業(yè)設 計必做:P17:7選做:補充作業(yè):已知一元二次方程

7、x2+3x+1=0的兩個根是,求的值.教師出示問題,引出課題學生初步了解本課所要研究的問題學生通過去括號、合并得到一般形式的一元二次方程,教師適時點撥,分析總結得到結論.學生獨自完成鞏固上訴知識教師出示探究問題,學生通過特殊例子入手,再通過一般形式推導證明,教師引導學生根據求根公式進行探究、交流,嘗試發(fā)現結論學生獨立解決,并交流先觀察,嘗試選用合適方法解題,之后交流,比較解法學生嘗試歸納,師生總結 學生獨立完成,教師巡回檢查,師生集體訂正學生歸納,總結闡述,體會,反思.并做出筆記.創(chuàng)設問題情境,激發(fā)學生好奇心,求知欲通過思考問題,讓學生知道二次項系數為1的一元二次方程的根與系數關系,為后面繼續(xù)研究做鋪墊讓學生通過探究問題,體會從特殊到一般的認知過程,體會數學結論的確定性加深對韋達定理的理解,培養(yǎng)學生的應用意識和能力通過學生親自解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論