版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、第十一章 三角形1、三角形的概念 由不在同意直線上的三條線段首尾順次相接所組成的圖形叫做三角形。組成三角形的線段叫做三角形的邊;相鄰兩邊的公共端點叫做三角形的頂點;相鄰兩邊所組成的角叫做三角形的內(nèi)角,簡稱三角形的角。2、三角形中的主要線段(1)三角形的一個角的平分線與這個角的對邊相交,這個角的頂點和交點間的線段叫做三角形的角平分線。(2)在三角形中,連接一個頂點和它對邊的中點的線段叫做三角形的中線。(3)從三角形一個頂點向它的對邊做垂線,頂點和垂足之間的線段叫做三角形的高線(簡稱三角形的高)。3、三角形的穩(wěn)定性三角形的形狀是固定的,三角形的這個性質叫做三角形的穩(wěn)定性。三角形的這個性質在生產(chǎn)生活
2、中應用很廣,需要穩(wěn)定的東西一般都制成三角形的形狀。4、三角形的特性與表示三角形有下面三個特性:(1)三角形有三條線段(2)三條線段不在同一直線上 三角形是封閉圖形(3)首尾順次相接三角形用符號“”表示,頂點是A、B、C的三角形記作“ABC”,讀作“三角形ABC”。5、三角形的分類三角形按邊的關系分類如下: 不等邊三角形三角形 底和腰不相等的等腰三角形 等腰三角形 等邊三角形三角形按角的關系分類如下: 直角三角形(有一個角為直角的三角形)三角形 銳角三角形(三個角都是銳角的三角形) 斜三角形 鈍角三角形(有一個角為鈍角的三角形)把邊和角聯(lián)系在一起,我們又有一種特殊的三角形:等腰直角三角形。它是兩
3、條直角邊相等的直角三角形。6、三角形的三邊關系定理及推論(1)三角形三邊關系定理:三角形的兩邊之和大于第三邊。推論:三角形的兩邊之差小于第三邊。(2)三角形三邊關系定理及推論的作用:判斷三條已知線段能否組成三角形當已知兩邊時,可確定第三邊的范圍。證明線段不等關系。7、三角形的內(nèi)角和定理及推論三角形的內(nèi)角和定理:三角形三個內(nèi)角和等于180。推論:直角三角形的兩個銳角互余。三角形的一個外角等于和它不相鄰的來兩個內(nèi)角的和。三角形的一個外角大于任何一個和它不相鄰的內(nèi)角。注:在同一個三角形中:等角對等邊;等邊對等角;大角對大邊;大邊對大角。8、三角形的面積=底高多邊形知識要點梳理 定義:由三條或三條以上
4、的線段首位順次連接所組成的封閉圖形叫做多邊形。 凸多邊形 分類1: 凹多邊形正多邊形:各邊相等,各角也相等的多邊形叫做正多邊形。 多邊形非正多邊形:1、n邊形的內(nèi)角和等于180(n-2)。 多邊形的定理 2、任意凸形多邊形的外角和等于360。 3、n邊形的對角線條數(shù)等于1/2n(n-3)第十二章 全等三角形一、全等三角形 能夠完全重合的兩個三角形叫做全等三角形。一個三角形經(jīng)過平移、翻折、旋轉可以得到它的全等形。2、全等三角形有哪些性質(1):全等三角形的對應邊相等、對應角相等。(2):全等三角形的周長相等、面積相等。(3):全等三角形的對應邊上的對應中線、角平分線、高線分別相等。3、全等三角形
5、的判定邊邊邊:三邊對應相等的兩個三角形全等(可簡寫成“SSS”)邊角邊:兩邊和它們的夾角對應相等兩個三角形全等(可簡寫成“SAS”)角邊角:兩角和它們的夾邊對應相等的兩個三角形全等(可簡寫成“ASA”)角角邊:兩角和其中一角的對邊對應相等的兩個三角形全等(可簡寫成“AAS”)斜邊.直角邊:斜邊和一條直角邊對應相等的兩個直角三角形全等(可簡寫成“HL”)4、證明兩個三角形全等的基本思路:二、角的平分線:1、(性質)角的平分線上的點到角的兩邊的距離相等.2、(判定)角的內(nèi)部到角的兩邊的距離相等的點在角的平分線上。三、學習全等三角形應注意以下幾個問題:(1):要正確區(qū)分“對應邊”與“對邊”,“對應角
6、”與 “對角”的不同含義;(2):表示兩個三角形全等時,表示對應頂點的字母要寫在對應的位置上;(3):“有三個角對應相等”或“有兩邊及其中一邊的對角對應相等”的兩個三角形不一定全等;(4):時刻注意圖形中的隱含條件,如 “公共角” 、“公共邊”、“對頂角” 1、全等三角形的概念能夠完全重合的兩個圖形叫做全等形。能夠完全重合的兩個三角形叫做全等三角形。兩個三角形全等時,互相重合的頂點叫做對應頂點,互相重合的邊叫做對應邊,互相重合的角叫做對應角。夾邊就是三角形中相鄰兩角的公共邊,夾角就是三角形中有公共端點的兩邊所成的角。2、全等三角形的表示和性質全等用符號“”表示,讀作“全等于”。如ABCDEF,
7、讀作“三角形ABC全等于三角形DEF”。注:記兩個全等三角形時,通常把表示對應頂點的字母寫在對應的位置上。3、三角形全等的判定三角形全等的判定定理:(1)邊角邊定理:有兩邊和它們的夾角對應相等的兩個三角形全等(可簡寫成“邊角邊”或“SAS”)(2)角邊角定理:有兩角和它們的夾邊對應相等的兩個三角形全等(可簡寫成“角邊角”或“ASA”)(3)邊邊邊定理:有三邊對應相等的兩個三角形全等(可簡寫成“邊邊邊”或“SSS”)。直角三角形全等的判定:對于特殊的直角三角形,判定它們?nèi)葧r,還有HL定理(斜邊、直角邊定理):有斜邊和一條直角邊對應相等的兩個直角三角形全等(可簡寫成“斜邊、直角邊”或“HL”)4
8、、全等變換只改變圖形的位置,二不改變其形狀大小的圖形變換叫做全等變換。全等變換包括一下三種:(1)平移變換:把圖形沿某條直線平行移動的變換叫做平移變換。(2)對稱變換:將圖形沿某直線翻折180,這種變換叫做對稱變換。(3)旋轉變換:將圖形繞某點旋轉一定的角度到另一個位置,這種變換叫做旋轉變換。 第十二章 軸對稱一、軸對稱圖形1. 把一個圖形沿著一條直線折疊,如果直線兩旁的部分能夠完全重合,那么這個圖形就叫做軸對稱圖形。這條直線就是它的對稱軸。這時我們也說這個圖形關于這條直線(成軸)對稱。2. 把一個圖形沿著某一條直線折疊,如果它能與另一個圖形完全重合,那么就說這兩個圖關于這條直線對稱。這條直線
9、叫做對稱軸。折疊后重合的點是對應點,叫做對稱點3、軸對稱圖形和軸對稱的區(qū)別與聯(lián)系 4.軸對稱的性質 關于某直線對稱的兩個圖形是全等形。 如果兩個圖形關于某條直線對稱,那么對稱軸是任何一對對應點所連線段的垂直平分線。 軸對稱圖形的對稱軸,是任何一對對應點所連線段的垂直平分線。 如果兩個圖形的對應點連線被同條直線垂直平分,那么這兩個圖形關于這條直線對稱。二、線段的垂直平分線 1. 經(jīng)過線段中點并且垂直于這條線段的直線,叫做這條線段的垂直平分線,也叫中垂線。2.線段垂直平分線上的點與這條線段的兩個端點的距離相等 3.與一條線段兩個端點距離相等的點,在線段的垂直平分線上三、用坐標表示軸對稱小結: 在平
10、面直角坐標系中,關于x軸對稱的點橫坐標相等,縱坐標互為相反數(shù).關于y軸對稱的點橫坐標互為相反數(shù),縱坐標相等.點(x, y)關于x軸對稱的點的坐標為_.點(x, y)關于y軸對稱的點的坐標為_.2.三角形三條邊的垂直平分線相交于一點,這個點到三角形三個頂點的距離相等四、(等腰三角形)知識點回顧1.等腰三角形的性質.等腰三角形的兩個底角相等。(等邊對等角).等腰三角形的頂角平分線、底邊上的中線、底邊上的高互相重合。(三線合一)2、等腰三角形的判定: 如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等。(等角對等邊)五、(等邊三角形)知識點回顧1.等邊三角形的性質:等邊三角形的三個角都相等,并且
11、每一個角都等于600 。2、等邊三角形的判定: 三個角都相等的三角形是等邊三角形。 有一個角是600的等腰三角形是等邊三角形。3. 在直角三角形中,如果一個銳角等于300,那么它所對的直角邊等于斜邊的一半。1、等腰三角形的性質(1)等腰三角形的性質定理及推論:定理:等腰三角形的兩個底角相等(簡稱:等邊對等角)推論1:等腰三角形頂角平分線平分底邊并且垂直于底邊。即等腰三角形的頂角平分線、底邊上的中線、底邊上的高重合。推論2:等邊三角形的各個角都相等,并且每個角都等于60。(2)等腰三角形的其他性質:等腰直角三角形的兩個底角相等且等于45等腰三角形的底角只能為銳角,不能為鈍角(或直角),但頂角可為
12、鈍角(或直角)。等腰三角形的三邊關系:設腰長為a,底邊長為b,則a等腰三角形的三角關系:設頂角為頂角為A,底角為B、C,則A=1802B,B=C=2、等腰三角形的判定等腰三角形的判定定理及推論:定理:如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(簡稱:等角對等邊)。這個判定定理常用于證明同一個三角形中的邊相等。推論1:三個角都相等的三角形是等邊三角形推論2:有一個角是60的等腰三角形是等邊三角形。推論3:在直角三角形中,如果一個銳角等于30,那么它所對的直角邊等于斜邊的一半。等腰三角形的性質與判定等腰三角形性質等腰三角形判定中線1、等腰三角形底邊上的中線垂直底邊,平分頂角;2、等腰三
13、角形兩腰上的中線相等,并且它們的交點與底邊兩端點距離相等。1、兩邊上中線相等的三角形是等腰三角形;2、如果一個三角形的一邊中線垂直這條邊(平分這個邊的對角),那么這個三角形是等腰三角形角平分線1、等腰三角形頂角平分線垂直平分底邊;2、等腰三角形兩底角平分線相等,并且它們的交點到底邊兩端點的距離相等。1、如果三角形的頂角平分線垂直于這個角的對邊(平分對邊),那么這個三角形是等腰三角形;2、三角形中兩個角的平分線相等,那么這個三角形是等腰三角形。高線1、等腰三角形底邊上的高平分頂角、平分底邊;2、等腰三角形兩腰上的高相等,并且它們的交點和底邊兩端點距離相等。1、如果一個三角形一邊上的高平分這條邊(
14、平分這條邊的對角),那么這個三角形是等腰三角形;2、有兩條高相等的三角形是等腰三角形。角等邊對等角等角對等邊邊底的一半腰長周長的一半兩邊相等的三角形是等腰三角形4、三角形中的中位線連接三角形兩邊中點的線段叫做三角形的中位線。(1)三角形共有三條中位線,并且它們又重新構成一個新的三角形。(2)要會區(qū)別三角形中線與中位線。三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半。三角形中位線定理的作用:位置關系:可以證明兩條直線平行。數(shù)量關系:可以證明線段的倍分關系。常用結論:任一個三角形都有三條中位線,由此有:結論1:三條中位線組成一個三角形,其周長為原三角形周長的一半。結論2:三條中位線
15、將原三角形分割成四個全等的三角形。結論3:三條中位線將原三角形劃分出三個面積相等的平行四邊形。結論4:三角形一條中線和與它相交的中位線互相平分。結論5:三角形中任意兩條中位線的夾角與這夾角所對的三角形的頂角相等。第十四章 整式乘除與因式分解一回顧知識點 1、主要知識回顧:冪的運算性質:amanamn (m、n為正整數(shù))同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加 amn (m、n為正整數(shù))冪的乘方,底數(shù)不變,指數(shù)相乘 (n為正整數(shù))積的乘方等于各因式乘方的積 amn (a0,m、n都是正整數(shù),且mn)同底數(shù)冪相除,底數(shù)不變,指數(shù)相減零指數(shù)冪的概念:a01 (a0)任何一個不等于零的數(shù)的零指數(shù)冪都等于l負指
16、數(shù)冪的概念:ap (a0,p是正整數(shù))任何一個不等于零的數(shù)的p(p是正整數(shù))指數(shù)冪,等于這個數(shù)的p指數(shù)冪的倒數(shù)也可表示為:(m0,n0,p為正整數(shù))單項式的乘法法則:單項式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對于只在一個單項式里含有的字母,則連同它的指數(shù)作為積的一個因式單項式與多項式的乘法法則:單項式與多項式相乘,用單項式和多項式的每一項分別相乘,再把所得的積相加多項式與多項式的乘法法則:多項式與多項式相乘,先用一個多項式的每一項與另一個多項式的每一項相乘,再把所得的積相加單項式的除法法則:單項式相除,把系數(shù)、同底數(shù)冪分別相除,作為商的因式:對于只在被除式里含有的字母,則連同它的指數(shù)
17、作為商的一個因式多項式除以單項式的法則:多項式除以單項式,先把這個多項式的每一項除以這個單項式,再把所得的商相加2、乘法公式:平方差公式:(ab)(ab)a2b2文字語言敘述:兩個數(shù)的和與這兩個數(shù)的差相乘,等于這兩個數(shù)的平方差完全平方公式:(ab)2a22abb2 (ab)2a22abb2文字語言敘述:兩個數(shù)的和(或差)的平方等于這兩個數(shù)的平方和加上(或減去)這兩個數(shù)的積的2倍3、因式分解:因式分解的定義把一個多項式化成幾個整式的乘積的形式,這種變形叫做把這個多項式因式分解 掌握其定義應注意以下幾點: (1)分解對象是多項式,分解結果必須是積的形式,且積的因式必須是整式,這三個要素缺一不可;(
18、2)因式分解必須是恒等變形; (3)因式分解必須分解到每個因式都不能分解為止弄清因式分解與整式乘法的內(nèi)在的關系因式分解與整式乘法是互逆變形,因式分解是把和差化為積的形式,而整式乘法是把積化為和差的形式二、熟練掌握因式分解的常用方法1、提公因式法(1)掌握提公因式法的概念;(2)提公因式法的關鍵是找出公因式,公因式的構成一般情況下有三部分:系數(shù)一各項系數(shù)的最大公約數(shù);字母各項含有的相同字母;指數(shù)相同字母的最低次數(shù);(3)提公因式法的步驟:第一步是找出公因式;第二步是提取公因式并確定另一因式需注意的是,提取完公因式后,另一個因式的項數(shù)與原多項式的項數(shù)一致,這一點可用來檢驗是否漏項(4)注意點:提取
19、公因式后各因式應該是最簡形式,即分解到“底”;如果多項式的第一項的系數(shù)是負的,一般要提出“”號,使括號內(nèi)的第一項的系數(shù)是正的2、公式法運用公式法分解因式的實質是把整式中的乘法公式反過來使用;常用的公式:平方差公式: a2b2 (ab)(ab)完全平方公式:a22abb2(ab)2 a22abb2(ab)23.十字相乘法第十五章 分式知識點一:分式的定義一般地,如果A,B表示兩個整數(shù),并且B中含有字母,那么式子叫做分式,A為分子,B為分母。知識點二:與分式有關的條件分式有意義:分母不為0()分式無意義:分母為0()分式值為0:分子為0且分母不為0()分式值為正或大于0:分子分母同號(或)分式值為
20、負或小于0:分子分母異號(或)分式值為1:分子分母值相等(A=B)分式值為-1:分子分母值互為相反數(shù)(A+B=0)知識點三:分式的基本性質分式的分子和分母同乘(或除以)一個不等于0的整式,分式的值不變。字母表示:,其中A、B、C是整式,C0。拓展:分式的符號法則:分式的分子、分母與分式本身的符號,改變其中任何兩個,分式的值不變,即注意:在應用分式的基本性質時,要注意C0這個限制條件和隱含條件B0。知識點四:分式的約分定義:根據(jù)分式的基本性質,把一個分式的分子與分母的公因式約去,叫做分式的約分。步驟:把分式分子分母因式分解,然后約去分子與分母的公因。注意:分式的分子與分母為單項式時可直接約分,約
21、去分子、分母系數(shù)的最大公約數(shù),然后約去分子分母相同因式的最低次冪。 分子分母若為多項式,約分時先對分子分母進行因式分解,再約分。知識點四:最簡分式的定義一個分式的分子與分母沒有公因式時,叫做最簡分式。知識點五:分式的通分 分式的通分:根據(jù)分式的基本性質,把幾個異分母的分式分別化成與原來的分式相等的同分母分式,叫做分式的通分。 分式的通分最主要的步驟是最簡公分母的確定。最簡公分母的定義:取各分母所有因式的最高次冪的積作公分母,這樣的公分母叫做最簡公分母。確定最簡公分母的一般步驟: 取各分母系數(shù)的最小公倍數(shù); 單獨出現(xiàn)的字母(或含有字母的式子)的冪的因式連同它的指數(shù)作為一個因式; 相同字母(或含有
22、字母的式子)的冪的因式取指數(shù)最大的。 保證凡出現(xiàn)的字母(或含有字母的式子)為底的冪的因式都要取。注意:分式的分母為多項式時,一般應先因式分解。知識點六分式的四則運算與分式的乘方 分式的乘除法法則:分式乘分式,用分子的積作為積的分子,分母的積作為積的分母。式子表示為:分式除以分式:把除式的分子、分母顛倒位置后,與被除式相乘。式子表示為 分式的乘方:把分子、分母分別乘方。式子 分式的加減法則:同分母分式加減法:分母不變,把分子相加減。式子表示為異分母分式加減法:先通分,化為同分母的分式,然后再加減。式子表示為整式與分式加減法:可以把整式當作一個整數(shù),整式前面是負號,要加括號,看作是分母為1的分式,
23、再通分。 分式的加、減、乘、除、乘方的混合運算的運算順序先乘方、再乘除、后加減,同級運算中,誰在前先算誰,有括號的先算括號里面的,也要注意靈活,提高解題質量。注意:在運算過程中,要明確每一步變形的目的和依據(jù),注意解題的格式要規(guī)范,不要隨便跳步,以便查對有無錯誤或分析出錯的原因。加減后得出的結果一定要化成最簡分式(或整式)。知識點六整數(shù)指數(shù)冪 引入負整數(shù)、零指數(shù)冪后,指數(shù)的取值范圍就推廣到了全體實數(shù),并且正正整數(shù)冪的法則對對負整數(shù)指數(shù)冪一樣適用。即 () () () (任何不等于零的數(shù)的零次冪都等于1)其中m,n均為整數(shù)??茖W記數(shù)法若一個數(shù)x是0x10的數(shù)則可以表示為(,即a的整數(shù)部分只有一位,
24、n為整數(shù))的形式,n的確定n=比整數(shù)部分的數(shù)位的個數(shù)少1。如120 000 000=知識點七分式方程的解的步驟去分母,把方程兩邊同乘以各分母的最簡公分母。(產(chǎn)生增根的過程)解整式方程,得到整式方程的解。檢驗,把所得的整式方程的解代入最簡公分母中:如果最簡公分母為0,則原方程無解,這個未知數(shù)的值是原方程的增根;如果最簡公分母不為0,則是原方程的解。產(chǎn)生增根的條件是:是得到的整式方程的解;代入最簡公分母后值為0。知識點八列分式方程基本步驟 審仔細審題,找出等量關系。 設合理設未知數(shù)。 列根據(jù)等量關系列出方程(組)。 解解出方程(組)。注意檢驗 答答題。第十六章 二次根式1.二次根式:式子(0)叫做
25、二次根式。2.最簡二次根式:必須同時滿足下列條件:被開方數(shù)中不含開方開的盡的因數(shù)或因式; 被開方數(shù)中不含分母; 分母中不含根式。3.同類二次根式:二次根式化成最簡二次根式后,若被開方數(shù)相同,則這幾個二次根式就是同類二次根式。(0)(0)0 (=0);4.二次根式的性質:(1)()2= (0); (2)5.二次根式的運算: (1)因式的外移和內(nèi)移:如果被開方數(shù)中有的因式能夠開得盡方,那么,就可以用它的算術根代替而移到根號外面;如果被開方數(shù)是代數(shù)和的形式,那么先解因式,變形為積的形式,再移因式到根號外面,反之也可以將根號外面的正因式平方后移到根號里面(2)二次根式的加減法:先把二次根式化成最簡二次
26、根式再合并同類二次根式(3)二次根式的乘除法:二次根式相乘(除),將被開方數(shù)相乘(除),所得的積(商)仍作積(商)的被開方數(shù)并將運算結果化為最簡二次根式=(a0,b0); (b0,a0)(4) 有理數(shù)的加法交換律、結合律,乘法交換律及結合律,乘法對加法的分配律以及多項式的乘法公式,都適用于二次根式的運算第十七章 勾股定理 1.勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a2b2=c2。2.勾股定理逆定理:如果三角形三邊長a,b,c滿足a2b2=c2。,那么這個三角形是直角三角形。3.經(jīng)過證明被確認正確的命題叫做定理。 我們把題設、結論正好相反的兩個命題叫做互逆命題。如果把
27、其中一個叫做原命題,那么另一個叫做它的逆命題。(例:勾股定理與勾股定理逆定理) 4.直角三角形的性質 (1)、直角三角形的兩個銳角互余??杀硎救缦拢篊=90A+B=90 (2)、在直角三角形中,30角所對的直角邊等于斜邊的一半。 A=30 可表示如下: BC=AB C=90 (3)、直角三角形斜邊上的中線等于斜邊的一半 ACB=90 可表示如下: CD=AB=BD=AD D為AB的中點5、攝影定理在直角三角形中,斜邊上的高線是兩直角邊在斜邊上的攝影的比例中項,每條直角邊是它們在斜邊上的攝影和斜邊的比例中項ACB=90 CDAB 6、常用關系式由三角形面積公式可得:ABCD=ACBC7、直角三角
28、形的判定 1、有一個角是直角的三角形是直角三角形。 2、如果三角形一邊上的中線等于這邊的一半,那么這個三角形是直角三角形。 3、勾股定理的逆定理:如果三角形的三邊長a,b,c有關系,那么這個三角形是直角三角形。8、命題、定理、證明 1、命題的概念判斷一件事情的語句,叫做命題。理解:命題的定義包括兩層含義:(1)命題必須是個完整的句子;(2)這個句子必須對某件事情做出判斷。2、命題的分類(按正確、錯誤與否分) 真命題(正確的命題)命題 假命題(錯誤的命題)所謂正確的命題就是:如果題設成立,那么結論一定成立的命題。所謂錯誤的命題就是:如果題設成立,不能證明結論總是成立的命題。3、公理人們在長期實踐
29、中總結出來的得到人們公認的真命題,叫做公理。4、定理用推理的方法判斷為正確的命題叫做定理。5、證明判斷一個命題的正確性的推理過程叫做證明。6、證明的一般步驟(1)根據(jù)題意,畫出圖形。(2)根據(jù)題設、結論、結合圖形,寫出已知、求證。(3)經(jīng)過分析,找出由已知推出求證的途徑,寫出證明過程。9、三角形中的中位線連接三角形兩邊中點的線段叫做三角形的中位線。(1)三角形共有三條中位線,并且它們又重新構成一個新的三角形。(2)要會區(qū)別三角形中線與中位線。三角形中位線定理:三角形的中位線平行于第三邊,并且等于它的一半。三角形中位線定理的作用:位置關系:可以證明兩條直線平行。數(shù)量關系:可以證明線段的倍分關系。
30、常用結論:任一個三角形都有三條中位線,由此有:結論1:三條中位線組成一個三角形,其周長為原三角形周長的一半。結論2:三條中位線將原三角形分割成四個全等的三角形。結論3:三條中位線將原三角形劃分出三個面積相等的平行四邊形。結論4:三角形一條中線和與它相交的中位線互相平分。結論5:三角形中任意兩條中位線的夾角與這夾角所對的三角形的頂角相等。10數(shù)學口訣. 平方差公式:平方差公式有兩項,符號相反切記牢,首加尾乘首減尾,莫與完全公式相混淆。 完全平方公式:完全平方有三項,首尾符號是同鄉(xiāng),首平方、尾平方,首尾二倍放中央;首尾括號帶平方,尾項符號隨中央。第十八章 四邊形1四邊形的內(nèi)角和與外角和定理:(1)
31、四邊形的內(nèi)角和等于360;(2)四邊形的外角和等于360.2多邊形的內(nèi)角和與外角和定理:(1)n邊形的內(nèi)角和等于(n-2)180;(2)任意多邊形的外角和等于360.3平行四邊形的性質:因為ABCD是平行四邊形4.平行四邊形的判定:.5.矩形的性質:因為ABCD是矩形6. 矩形的判定:四邊形ABCD是矩形. 7菱形的性質:因為ABCD是菱形8菱形的判定:四邊形四邊形ABCD是菱形.9正方形的性質:因為ABCD是正方形 (1) (2)(3) 10正方形的判定:四邊形ABCD是正方形. (3)ABCD是矩形又AD=AB 四邊形ABCD是正方形11等腰梯形的性質:因為ABCD是等腰梯形 12等腰梯形
32、的判定:四邊形ABCD是等腰梯形 (3)ABCD是梯形且ADBCAC=BDABCD四邊形是等腰梯形 14三角形中位線定理:三角形的中位線平行第三邊,并且等于它的一半.15梯形中位線定理:梯形的中位線平行于兩底,并且等于兩底和的一半.一 基本概念:四邊形,四邊形的內(nèi)角,四邊形的外角,多邊形,平行線間的距離,平行四邊形,矩形,菱形,正方形,中心對稱,中心對稱圖形,梯形,等腰梯形,直角梯形,三角形中位線,梯形中位線.二 定理:中心對稱的有關定理1關于中心對稱的兩個圖形是全等形.2關于中心對稱的兩個圖形,對稱點連線都經(jīng)過對稱中心,并且被對稱中心平分.3如果兩個圖形的對應點連線都經(jīng)過某一點,并且被這一點
33、平分,那么這兩個圖形關于這一點對稱.三 公式: 1S菱形 =ab=ch.(a、b為菱形的對角線 ,c為菱形的邊長 ,h為c邊上的高)2S平行四邊形 =ah. a為平行四邊形的邊,h為a上的高)3S梯形 =(a+b)h=Lh.(a、b為梯形的底,h為梯形的高,L為梯形的中位線)四 常識:1若n是多邊形的邊數(shù),則對角線條數(shù)公式是:.2規(guī)則圖形折疊一般“出一對全等,一對相似”.3如圖:平行四邊形、矩形、菱形、正方形的從屬關系.4常見圖形中,僅是軸對稱圖形的有:角、等腰三角形、等邊三角形、正奇邊形、等腰梯形 ;僅是中心對稱圖形的有:平行四邊形 ;是雙對稱圖形的有:線段、矩形、菱形、正方形、正偶邊形、圓
34、 .注意:線段有兩條對稱軸.第十八章 一次函數(shù)一.常量、變量: 在一個變化過程中,數(shù)值發(fā)生變化的量叫做 變量 ;數(shù)值始終不變的量叫做 常量 。二、函數(shù)的概念:函數(shù)的定義:一般的,在一個變化過程中,如果有兩個變量x與y,并且對于x的每一個確定的值,y都有唯一確定的值與其對應,那么我們就說x是自變量,y是x的函數(shù)三、函數(shù)中自變量取值范圍的求法:(1)用整式表示的函數(shù),自變量的取值范圍是全體實數(shù)。(2)用分式表示的函數(shù),自變量的取值范圍是使分母不為0的一切實數(shù)。(3)用寄次根式表示的函數(shù),自變量的取值范圍是全體實數(shù)。 用偶次根式表示的函數(shù),自變量的取值范圍是使被開方數(shù)為非負數(shù)的一 切實數(shù)。(4)若解析式由上述幾種形式綜合而成,須先求出各部分的取值范圍,然后再求其公共范圍,即為自變量的取值范圍。(5)對于與實際問題有關系的,自變量的取值范圍應使實際問題有意義。四、 函數(shù)圖象的定義:一般的,對于一個函數(shù),如果把自變量與函數(shù)的每對對應值分別作為點的橫、縱坐標,那么在坐標平面內(nèi)由這些點組成的圖形,就是這個函數(shù)的圖象五、用描點法畫函數(shù)的圖象的一般步驟1、列表(表中給
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年度云南省高校教師資格證之高等教育心理學考前沖刺試卷A卷含答案
- 第5單元 圓 單元測試(含答案)2024-2025學年六年級上冊數(shù)學人教版
- 2024-2025學年廣東省部分學校高三(上)大聯(lián)考模擬預測物理試卷(含答案)
- 數(shù)據(jù)中心的未來發(fā)展
- 福建師范大學協(xié)和學院《生活藥學》2021-2022學年第一學期期末試卷
- 福建師范大學《政治學與行政學名著選讀》2022-2023學年第一學期期末試卷
- 福建師范大學《刑事案例與法條分析》2023-2024學年第一學期期末試卷
- 福建師范大學《全媒體現(xiàn)場主持實訓》2022-2023學年第一學期期末試卷
- 福建師范大學《國外社會保障制度概述》2023-2024學年第一學期期末試卷
- 第8章 小學生心理咨詢與輔導課件
- 水平定向鉆施工機械
- 室內(nèi)設計行業(yè)優(yōu)勢與劣勢分析
- 2024年滁州市中級人民法院招考聘用司法輔助人員高頻考題難、易錯點模擬試題(共500題)附帶答案詳解
- 城市管理知識競賽考試題庫200題(含答案)
- 北京市東城區(qū)六年級(上)期末語文試卷
- 鄉(xiāng)村振興農(nóng)村設計案例分析報告
- 【體能大循環(huán)】聚焦體能循環(huán)-探索運動奧秘-幼兒園探究體能大循環(huán)有效開展策略課件
- 《化工設備檢維修實訓》課程標準(煤炭清潔利用技術)
- AI在航空航天領域中的應用
- 餐飲員工心態(tài)培訓課件
- 2024年注冊消防工程師題庫及參考答案【完整版】
評論
0/150
提交評論