183154_高二會(huì)考數(shù)學(xué)知識(shí)點(diǎn)歸納五篇分享_第1頁
183154_高二會(huì)考數(shù)學(xué)知識(shí)點(diǎn)歸納五篇分享_第2頁
183154_高二會(huì)考數(shù)學(xué)知識(shí)點(diǎn)歸納五篇分享_第3頁
183154_高二會(huì)考數(shù)學(xué)知識(shí)點(diǎn)歸納五篇分享_第4頁
183154_高二會(huì)考數(shù)學(xué)知識(shí)點(diǎn)歸納五篇分享_第5頁
免費(fèi)預(yù)覽已結(jié)束,剩余6頁可下載查看

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、高二會(huì)考數(shù)學(xué)知識(shí)點(diǎn)歸納五篇分享 高二會(huì)考數(shù)學(xué)知識(shí)點(diǎn)1考點(diǎn)一:向量的概念、向量的基本定理【內(nèi)容解讀】了解向量的實(shí)際背景,掌握向量、零向量、平行向量、共線向量、單位向量、相等向量等概念,理解向量的幾何表示,掌握平面向量的基本定理。注意對(duì)向量概念的理解,向量是可以自由移動(dòng)的,平移后所得向量與原向量相同;兩個(gè)向量無法比較大小,它們的模可比較大小??键c(diǎn)二:向量的運(yùn)算【內(nèi)容解讀】向量的運(yùn)算要求掌握向量的加減法運(yùn)算,會(huì)用平行四邊形法則、三角形法則進(jìn)行向量的加減運(yùn)算;掌握實(shí)數(shù)與向量的積運(yùn)算,理解兩個(gè)向量共線的含義,會(huì)判斷兩個(gè)向量的平行關(guān)系;掌握向量的數(shù)量積的運(yùn)算,體會(huì)平面向量的數(shù)量積與向量投影的關(guān)系,并理解其

2、幾何意義,掌握數(shù)量積的坐標(biāo)表達(dá)式,會(huì)進(jìn)行平面向量積的運(yùn)算,能運(yùn)用數(shù)量積表示兩個(gè)向量的夾角,會(huì)用向量積判斷兩個(gè)平面向量的垂直關(guān)系。【命題規(guī)律】命題形式主要以選擇、填空題型出現(xiàn),難度不大,考查重點(diǎn)為模和向量夾角的定義、夾角公式、向量的坐標(biāo)運(yùn)算,有時(shí)也會(huì)與其它內(nèi)容相結(jié)合??键c(diǎn)三:定比分點(diǎn)【內(nèi)容解讀】掌握線段的定比分點(diǎn)和中點(diǎn)坐標(biāo)公式,并能熟練應(yīng)用,求點(diǎn)分有向線段所成比時(shí),可借助圖形來幫助理解?!久}規(guī)律】重點(diǎn)考查定義和公式,主要以選擇題或填空題型出現(xiàn),難度一般。由于向量應(yīng)用的廣泛性,經(jīng)常也會(huì)與三角函數(shù),解析幾何一并考查,若出現(xiàn)在解答題中,難度以中檔題為主,偶爾也以難度略高的題目??键c(diǎn)四:向量與三角函數(shù)

3、的綜合問題【內(nèi)容解讀】向量與三角函數(shù)的綜合問題是高考經(jīng)常出現(xiàn)的問題,考查了向量的知識(shí),三角函數(shù)的知識(shí),達(dá)到了高考中試題的覆蓋面的要求?!久}規(guī)律】命題以三角函數(shù)作為坐標(biāo),以向量的坐標(biāo)運(yùn)算或向量與解三角形的內(nèi)容相結(jié)合,也有向量與三角函數(shù)圖象平移結(jié)合的問題,屬中檔偏易題。考點(diǎn)五:平面向量與函數(shù)問題的交匯【內(nèi)容解讀】平面向量與函數(shù)交匯的問題,主要是向量與二次函數(shù)結(jié)合的問題為主,要注意自變量的取值范圍?!久}規(guī)律】命題多以解答題為主,屬中檔題??键c(diǎn)六:平面向量在平面幾何中的應(yīng)用【內(nèi)容解讀】向量的坐標(biāo)表示實(shí)際上就是向量的代數(shù)表示.在引入向量的坐標(biāo)表示后,使向量之間的運(yùn)算代數(shù)化,這樣就可以將“形”和“數(shù)”

4、緊密地結(jié)合在一起.因此,許多平面幾何問題中較難解決的問題,都可以轉(zhuǎn)化為大家熟悉的代數(shù)運(yùn)算的論證.也就是把平面幾何圖形放到適當(dāng)?shù)淖鴺?biāo)系中,賦予幾何圖形有關(guān)點(diǎn)與平面向量具體的坐標(biāo),這樣將有關(guān)平面幾何問題轉(zhuǎn)化為相應(yīng)的代數(shù)運(yùn)算和向量運(yùn)算,從而使問題得到解決.【命題規(guī)律】命題多以解答題為主,屬中等偏難的試題。高二會(huì)考數(shù)學(xué)知識(shí)點(diǎn)2直線的傾斜角:定義:x軸正向與直線向上方向之間所成的角叫直線的傾斜角。特別地,當(dāng)直線與x軸平行或重合時(shí),我們規(guī)定它的傾斜角為0度。因此,傾斜角的取值范圍是0180直線的斜率:定義:傾斜角不是90的直線,它的傾斜角的正切叫做這條直線的斜率。直線的斜率常用k表示。即。斜率反映直線與軸

5、的傾斜程度。過兩點(diǎn)的直線的斜率公式。注意:(1)當(dāng)時(shí),公式右邊無意義,直線的斜率不存在,傾斜角為90;(2)k與p1、p2的順序無關(guān);(3)以后求斜率可不通過傾斜角而由直線上兩點(diǎn)的坐標(biāo)直接求得;(4)求直線的傾斜角可由直線上兩點(diǎn)的坐標(biāo)先求斜率得到。直線方程:1.點(diǎn)斜式:y-y0=k(x-x0)(x0,y0)是直線所通過的已知點(diǎn)的坐標(biāo),k是直線的已知斜率。x是自變量,直線上任意一點(diǎn)的橫坐標(biāo);y是因變量,直線上任意一點(diǎn)的縱坐標(biāo)。2.斜截式:y=kx+b直線的斜截式方程:y=kx+b,其中k是直線的斜率,b是直線在y軸上的截距。該方程叫做直線的斜截式方程,簡(jiǎn)稱斜截式。此斜截式類似于一次函數(shù)的表達(dá)式。

6、3.兩點(diǎn)式;(y-y1)/(y2-y1)=(x-x1)/(x2-x1)如果x1=x2,y1=y2,那么兩點(diǎn)就重合了,相當(dāng)于只有一個(gè)已知點(diǎn)了,這樣不能確定一條直線。如果x1=x2,y1y2,那么此直線就是垂直于x軸的一條直線,其方程為x=x1,不能表示成上面的一般式。如果x1x2,但y1=y2,那么此直線就是垂直于y軸的一條直線,其方程為y=y1,也不能表示成上面的一般式。4.截距式x/a+y/b=1對(duì)x的截距就是y=0時(shí),x的值,對(duì)y的截距就是x=0時(shí),y的值。x截距為a,y截距b,截距式就是:x/a+y/b=1下面由斜截式方程推導(dǎo)y=kx+b,-kx=b-y令x=0求出y=b,令y=0求出x

7、=-b/k所以截距a=-b/k,b=b帶入得x/a+y/b=x/(-b/k)+y/b=-kx/b+y/b=(b-y)/b+y/b=b/b=1。5.一般式;ax+by+c=0將ax+by+c=0變換可得y=-x/b-c/b(b不為零),其中-x/b=k(斜率),c/b=b(截距)。ax+by+c=0在解析幾何中更常用,用方程處理起來比較方便。高二會(huì)考數(shù)學(xué)知識(shí)點(diǎn)3常用邏輯用語:1、四種命題:原命題:若p則q;逆命題:若q則p;否命題:若p則q;逆否命題:若q則p注:1、原命題與逆否命題等價(jià);逆命題與否命題等價(jià)。判斷命題真假時(shí)注意轉(zhuǎn)化。2、注意命題的否定與否命題的區(qū)別:命題否定形式是;否命題是.命題

8、“或”的否定是“且”;“且”的否定是“或”.3、邏輯聯(lián)結(jié)詞:且(and):命題形式pq;pqpqpqp或(or):命題形式pq;真真真真假非(not):命題形式p.真假假真假假真假真真假假假假真“或命題”的真假特點(diǎn)是“一真即真,要假全假”;“且命題”的真假特點(diǎn)是“一假即假,要真全真”;“非命題”的真假特點(diǎn)是“一真一假”4、充要條件由條件可推出結(jié)論,條件是結(jié)論成立的充分條件;由結(jié)論可推出條件,則條件是結(jié)論成立的必要條件。5、全稱命題與特稱命題:短語“所有”在陳述中表示所述事物的全體,邏輯中通常叫做全稱量詞,并用符號(hào)表示。含有全體量詞的命題,叫做全稱命題。短語“有一個(gè)”或“有些”或“至少有一個(gè)”在

9、陳述中表示所述事物的個(gè)體或部分,邏輯中通常叫做存在量詞,并用符號(hào)表示,含有存在量詞的命題,叫做存在性命題。高二會(huì)考數(shù)學(xué)知識(shí)點(diǎn)4空間中的垂直問題(1)線線、面面、線面垂直的定義兩條異面直線的垂直:如果兩條異面直線所成的角是直角,就說這兩條異面直線互相垂直.線面垂直:如果一條直線和一個(gè)平面內(nèi)的任何一條直線垂直,就說這條直線和這個(gè)平面垂直.平面和平面垂直:如果兩個(gè)平面相交,所成的二面角(從一條直線出發(fā)的兩個(gè)半平面所組成的圖形)是直二面角(平面角是直角),就說這兩個(gè)平面垂直.(2)垂直關(guān)系的判定和性質(zhì)定理線面垂直判定定理和性質(zhì)定理判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直線垂直

10、這個(gè)平面.性質(zhì)定理:如果兩條直線同垂直于一個(gè)平面,那么這兩條直線平行.面面垂直的判定定理和性質(zhì)定理判定定理:如果一個(gè)平面經(jīng)過另一個(gè)平面的一條垂線,那么這兩個(gè)平面互相垂直.性質(zhì)定理:如果兩個(gè)平面互相垂直,那么在一個(gè)平面內(nèi)垂直于他們的交線的直線垂直于另一個(gè)平面.高二會(huì)考數(shù)學(xué)知識(shí)點(diǎn)5圓柱、圓錐、圓臺(tái)和球的表面積(1)圓柱、圓錐、圓臺(tái)和多面體一樣都是可以平面展開的。圓柱、圓錐、圓臺(tái)的側(cè)面展開圖,是求其側(cè)面積的基本依據(jù)。圓柱的側(cè)面展開圖,是由底面圖的周長和母線長組成的一個(gè)矩形。圓錐和側(cè)面展開圖是一個(gè)由兩條母線長和底面圓的周長組成的扇形,其扇形的圓心角為圓臺(tái)的側(cè)面展開圖是一個(gè)由兩條母線長和上、下底面周長組

11、成的扇環(huán),其扇環(huán)的圓心角為這個(gè)公式有利于空間幾何體和其側(cè)面展開圖的互化顯然,當(dāng)r=0時(shí),這個(gè)公式就是圓錐側(cè)面展開圖扇形的圓心角公式,所以,圓錐側(cè)面展開圖扇形的圓心角公式是圓臺(tái)相關(guān)角的特例。(2)圓柱、圓錐和圓臺(tái)的側(cè)面公式為s側(cè)=(r+r)l當(dāng)r=r時(shí),s側(cè)=2rl,即圓柱的側(cè)面積公式。當(dāng)r=0時(shí),s側(cè)=rrl,即圓錐的面積公式。要重視,側(cè)面積間的這種關(guān)系。(3)球面是不能平面展開的圖形,所以,求它的面積的方法與柱、錐、臺(tái)的方法完全不同。推導(dǎo)出來,要用“微積分”等高等數(shù)學(xué)的知識(shí),課本上不能算是一種證明。求不規(guī)則圓形的度量屬性的常用方法是“細(xì)分求和取極限”,這種方法,在學(xué)完“微積分”的相關(guān)內(nèi)容后,不證自明,這里從略。高二會(huì)考數(shù)學(xué)知識(shí)點(diǎn)歸納五篇分享相關(guān)*:1.高二

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論