版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、高二數(shù)學(xué)知識(shí)點(diǎn)最新整理5篇分享 高二數(shù)學(xué)知識(shí)點(diǎn)1直線與平面的位置關(guān)系2.1空間點(diǎn)、直線、平面之間的位置關(guān)系2.1.11平面含義:平面是無(wú)限延展的2平面的畫(huà)法及表示(1)平面的畫(huà)法:水平放置的平面通常畫(huà)成一個(gè)平行四邊形,銳角畫(huà)成450,且橫邊畫(huà)成鄰邊的2倍長(zhǎng)(如圖)(2)平面通常用希臘字母、等表示,如平面、平面等,也可以用表示平面的平行四邊形的四個(gè)頂點(diǎn)或者相對(duì)的兩個(gè)頂點(diǎn)的大寫(xiě)字母來(lái)表示,如平面ac、平面abcd等。3三個(gè)公理:(1)公理1:如果一條直線上的兩點(diǎn)在一個(gè)平面內(nèi),那么這條直線在此平面內(nèi)符號(hào)表示為albl=lab公理1作用:判斷直線是否在平面內(nèi)(2)公理2:過(guò)不在一條直線上的三點(diǎn),有且只
2、有一個(gè)平面。符號(hào)表示為:a、b、c三點(diǎn)不共線=有且只有一個(gè)平面,使a、b、c。公理2作用:確定一個(gè)平面的依據(jù)。(3)公理3:如果兩個(gè)不重合的平面有一個(gè)公共點(diǎn),那么它們有且只有一條過(guò)該點(diǎn)的公共直線。符號(hào)表示為:p=l,且pl公理3作用:判定兩個(gè)平面是否相交的依據(jù)高二數(shù)學(xué)知識(shí)點(diǎn)2圓的方程1、圓的定義:平面內(nèi)到一定點(diǎn)的距離等于定長(zhǎng)的點(diǎn)的集合叫圓,定點(diǎn)為圓心,定長(zhǎng)為圓的半徑。2、圓的方程(1)標(biāo)準(zhǔn)方程,圓心,半徑為r;(2)一般方程當(dāng)時(shí),方程表示圓,此時(shí)圓心為,半徑為當(dāng)時(shí),表示一個(gè)點(diǎn);當(dāng)時(shí),方程不表示任何圖形。(3)求圓方程的方法:一般都采用待定系數(shù)法:先設(shè)后求。確定一個(gè)圓需要三個(gè)獨(dú)立條件,若利用圓的
3、標(biāo)準(zhǔn)方程,需求出a,b,r;若利用一般方程,需要求出d,e,f;另外要注意多利用圓的幾何性質(zhì):如弦的中垂線必經(jīng)過(guò)原點(diǎn),以此來(lái)確定圓心的位置。3、直線與圓的位置關(guān)系:直線與圓的位置關(guān)系有相離,相切,相交三種情況:(1)設(shè)直線,圓,圓心到l的距離為,則有;(2)過(guò)圓外一點(diǎn)的切線:k不存在,驗(yàn)證是否成立k存在,設(shè)點(diǎn)斜式方程,用圓心到該直線距離=半徑,求解k,得到方程(3)過(guò)圓上一點(diǎn)的切線方程:圓(x-a)2+(y-b)2=r2,圓上一點(diǎn)為(x0,y0),則過(guò)此點(diǎn)的切線方程為(x0-a)(x-a)+(y0-b)(y-b)=r24、圓與圓的位置關(guān)系:通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)
4、確定。設(shè)圓,兩圓的位置關(guān)系常通過(guò)兩圓半徑的和(差),與圓心距(d)之間的大小比較來(lái)確定。當(dāng)時(shí)兩圓外離,此時(shí)有公切線四條;當(dāng)時(shí)兩圓外切,連心線過(guò)切點(diǎn),有外公切線兩條,內(nèi)公切線一條;當(dāng)時(shí)兩圓相交,連心線垂直平分公共弦,有兩條外公切線;當(dāng)時(shí),兩圓內(nèi)切,連心線經(jīng)過(guò)切點(diǎn),只有一條公切線;當(dāng)時(shí),兩圓內(nèi)含;當(dāng)時(shí),為同心圓。注意:已知圓上兩點(diǎn),圓心必在中垂線上;已知兩圓相切,兩圓心與切點(diǎn)共線圓的輔助線一般為連圓心與切線或者連圓心與弦中點(diǎn)高二數(shù)學(xué)知識(shí)點(diǎn)3等差數(shù)列對(duì)于一個(gè)數(shù)列an,如果任意相鄰兩項(xiàng)之差為一個(gè)常數(shù),那么該數(shù)列為等差數(shù)列,且稱這一定值差為公差,記為d;從第一項(xiàng)a1到第n項(xiàng)an的總和,記為sn。那么,通
5、項(xiàng)公式為,其求法很重要,利用了“疊加原理”的思想:將以上n-1個(gè)式子相加,便會(huì)接連消去很多相關(guān)的項(xiàng),最終等式左邊余下an,而右邊則余下a1和n-1個(gè)d,如此便得到上述通項(xiàng)公式。此外,數(shù)列前n項(xiàng)的和,其具體推導(dǎo)方式較簡(jiǎn)單,可用以上類似的疊加的方法,也可以采取迭代的方法,在此,不再?gòu)?fù)述。值得說(shuō)明的是,前n項(xiàng)的和sn除以n后,便得到一個(gè)以a1為首項(xiàng),以d/2為公差的新數(shù)列,利用這一特點(diǎn)可以使很多涉及sn的數(shù)列問(wèn)題迎刃而解。等比數(shù)列對(duì)于一個(gè)數(shù)列an,如果任意相鄰兩項(xiàng)之商(即二者的比)為一個(gè)常數(shù),那么該數(shù)列為等比數(shù)列,且稱這一定值商為公比q;從第一項(xiàng)a1到第n項(xiàng)an的總和,記為tn。那么,通項(xiàng)公式為(即
6、a1乘以q的(n-1)次方,其推導(dǎo)為“連乘原理”的思想:a2=a1_,a3=a2_,a4=a3_,an=an-1_,將以上(n-1)項(xiàng)相乘,左右消去相應(yīng)項(xiàng)后,左邊余下an,右邊余下a1和(n-1)個(gè)q的乘積,也即得到了所述通項(xiàng)公式。此外,當(dāng)q=1時(shí)該數(shù)列的前n項(xiàng)和tn=a1_當(dāng)q1時(shí)該數(shù)列前n項(xiàng)的和tn=a1_1-q(n)/(1-q).高二數(shù)學(xué)知識(shí)點(diǎn)4(1)定義:(2)函數(shù)存在反函數(shù)的條件:(3)互為反函數(shù)的定義域與值域的關(guān)系:(4)求反函數(shù)的步驟:將看成關(guān)于的方程,解出,若有兩解,要注意解的選擇;將互換,得;寫(xiě)出反函數(shù)的定義域(即的值域)。(5)互為反函數(shù)的圖象間的關(guān)系:(6)原函數(shù)與反函數(shù)
7、具有相同的單調(diào)性;(7)原函數(shù)為奇函數(shù),則其反函數(shù)仍為奇函數(shù);原函數(shù)為偶函數(shù),它一定不存在反函數(shù)。七、常用的初等函數(shù):(1)一元一次函數(shù):(2)一元二次函數(shù):一般式兩點(diǎn)式頂點(diǎn)式二次函數(shù)求最值問(wèn)題:首先要采用配方法,化為一般式,有三個(gè)類型題型:(1)頂點(diǎn)固定,區(qū)間也固定。如:(2)頂點(diǎn)含參數(shù)(即頂點(diǎn)變動(dòng)),區(qū)間固定,這時(shí)要討論頂點(diǎn)橫坐標(biāo)何時(shí)在區(qū)間之內(nèi),何時(shí)在區(qū)間之外。(3)頂點(diǎn)固定,區(qū)間變動(dòng),這時(shí)要討論區(qū)間中的參數(shù).等價(jià)命題在區(qū)間上有兩根在區(qū)間上有兩根在區(qū)間或上有一根注意:若在閉區(qū)間討論方程有實(shí)數(shù)解的情況,可先利用在開(kāi)區(qū)間上實(shí)根分布的情況,得出結(jié)果,在令和檢查端點(diǎn)的情況。(3)反比例函數(shù):(4)
8、指數(shù)函數(shù):指數(shù)函數(shù):y=(ao,a1),圖象恒過(guò)點(diǎn)(0,1),單調(diào)性與a的值有關(guān),在解題中,往往要對(duì)a分a1和0(5)對(duì)數(shù)函數(shù):對(duì)數(shù)函數(shù):y=(ao,a1)圖象恒過(guò)點(diǎn)(1,0),單調(diào)性與a的值有關(guān),在解題中,往往要對(duì)a分a1和0高二數(shù)學(xué)知識(shí)點(diǎn)5直線與圓:1、直線的傾斜角的范圍是在平面直角坐標(biāo)系中,對(duì)于一條與軸相交的直線,如果把軸繞著交點(diǎn)按逆時(shí)針?lè)较蜣D(zhuǎn)到和直線重合時(shí)所轉(zhuǎn)的最小正角記為,就叫做直線的傾斜角。當(dāng)直線與軸重合或平行時(shí),規(guī)定傾斜角為0;2、斜率:已知直線的傾斜角為,且90,則斜率k=tan.過(guò)兩點(diǎn)(x1,y1),(x2,y2)的直線的斜率k=(y2-y1)/(x2-x1),另外切線的斜率
9、用求導(dǎo)的方法。3、直線方程:點(diǎn)斜式:直線過(guò)點(diǎn)斜率為,則直線方程為,斜截式:直線在軸上的截距為和斜率,則直線方程為4、直線與直線的位置關(guān)系:(1)平行a1/a2=b1/b2注意檢驗(yàn)(2)垂直a1a2+b1b2=05、點(diǎn)到直線的距離公式;兩條平行線與的距離是6、圓的標(biāo)準(zhǔn)方程:.圓的一般方程:注意能將標(biāo)準(zhǔn)方程化為一般方程7、過(guò)圓外一點(diǎn)作圓的切線,一定有兩條,如果只求出了一條,那么另外一條就是與軸垂直的直線.8、直線與圓的位置關(guān)系,通常轉(zhuǎn)化為圓心距與半徑的關(guān)系,或者利用垂徑定理,構(gòu)造直角三角形解決弦長(zhǎng)問(wèn)題.相離相切相交9、解決直線與圓的關(guān)系問(wèn)題時(shí),要充分發(fā)揮圓的平面幾何性質(zhì)的作用(如半徑、半弦長(zhǎng)、弦心距構(gòu)成直角三角形)直線與圓相交所得弦長(zhǎng)高二數(shù)學(xué)知識(shí)點(diǎn)最新整理5篇分享相關(guān)*:1.2020最新高二數(shù)學(xué)知識(shí)點(diǎn)歸納總結(jié)5篇精選2.2020最新高二數(shù)學(xué)知
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫(kù)網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025屆高考?xì)v史一輪復(fù)習(xí)模塊四選修部分選修三20世紀(jì)的戰(zhàn)爭(zhēng)與和平第47講第二次世界大戰(zhàn)和雅爾塔體系下的冷戰(zhàn)與和平學(xué)案含解析新人教版
- 小吃店租房合同范例
- 關(guān)于水果店轉(zhuǎn)讓合同范例
- 工廠木材買(mǎi)賣(mài)合同范例
- 建筑承攬合同范例
- 定鋪?zhàn)赓U合同范例
- 上海團(tuán)體旅游合同模板
- 廣告公司合同范例
- 化工設(shè)備清洗合同模板
- 公園承包攤位合同范例
- 2024年05月浙江嘉興職業(yè)技術(shù)學(xué)院海鹽學(xué)院招考聘用高層次緊缺人才45人筆試歷年高頻考點(diǎn)(難、易錯(cuò)點(diǎn))附帶答案詳解
- 精準(zhǔn)醫(yī)療與個(gè)體化治療
- 職業(yè)技術(shù)學(xué)院計(jì)算機(jī)應(yīng)用技術(shù)專業(yè)教學(xué)標(biāo)準(zhǔn)
- FZ∕T 73037-2019 針織運(yùn)動(dòng)襪行業(yè)標(biāo)準(zhǔn)
- 食品風(fēng)味研究專題智慧樹(shù)知到期末考試答案章節(jié)答案2024年中國(guó)農(nóng)業(yè)大學(xué)
- 《智能儀器》課后習(xí)題答案
- 浙江省小升初數(shù)學(xué)試卷及答案二
- 中國(guó)新能源汽車(chē)安全發(fā)展報(bào)告-2023-03-新能源
- PE100管施工方案水平定向鉆
- 實(shí)驗(yàn)室試劑管理培訓(xùn)
- 超星爾雅學(xué)習(xí)通《中國(guó)近現(xiàn)代史綱要(首都師范大學(xué))》2024章節(jié)測(cè)試答案
評(píng)論
0/150
提交評(píng)論